tensor_utils.cc 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pten/api/lib/utils/tensor_utils.h"
16

17
#include <utility>
18 19 20 21
#include <vector>

#include "paddle/pten/core/compat_utils.h"

22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace experimental {

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}

34
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensorBase(
35
    const paddle::framework::Tensor& src) {
36
  VLOG(3) << "MakePtenDenseTensor based Tensor.";
37 38
  pten::DenseTensorMeta meta{pten::TransToPtenDataType(src.type()),
                             src.dims(),
39
                             src.layout(),
40
                             src.offset()};
41 42 43 44 45
  if (!src.IsInitialized()) {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(src.place())),
        std::move(meta));
  }
46
  auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
47 48 49 50 51
  return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                             std::move(meta));
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
52 53 54
    const paddle::framework::Tensor& src) {
  auto out = MakePtenDenseTensorBase(
      static_cast<const paddle::framework::Tensor&>(src));
55 56 57
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
58 59
}

60
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensorBase(
61
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
62 63
  pten::DenseTensorMeta meta{
      arg_def.dtype, src.dims(), src.layout(), src.offset()};
64

65 66 67
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
    auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
68 69 70 71 72 73 74 75 76 77 78
    return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                               std::move(meta));
  } else {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(
            pten::TransToFluidPlace(arg_def.backend))),
        std::move(meta));
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
79 80
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
  auto out = MakePtenDenseTensorBase(
81 82 83 84
      static_cast<const paddle::framework::Tensor&>(src), arg_def);
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
85 86
}

87
pten::Scalar MakePtenScalar(const paddle::framework::Tensor& src) {
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  PADDLE_ENFORCE_EQ(src.numel(),
                    1,
                    paddle::platform::errors::InvalidArgument(
                        "The Scalar only supports Tensor with 1 element, "
                        "but now Tensor has %d element.",
                        src.numel()));
  switch (src.type()) {
    case paddle::framework::proto::VarType::FP32:
      return {src.template data<float>()[0]};
    case paddle::framework::proto::VarType::FP64:
      return {src.template data<double>()[0]};
    case paddle::framework::proto::VarType::FP16:
      return {src.template data<float16>()[0]};
    case paddle::framework::proto::VarType::BF16:
      return {src.template data<bfloat16>()[0]};
    case paddle::framework::proto::VarType::INT32:
      return {src.template data<int32_t>()[0]};
    case paddle::framework::proto::VarType::INT64:
      return {src.template data<int64_t>()[0]};
    case paddle::framework::proto::VarType::INT16:
      return {src.template data<int16_t>()[0]};
    case paddle::framework::proto::VarType::INT8:
      return {src.template data<int8_t>()[0]};
    case paddle::framework::proto::VarType::UINT8:
      return {src.template data<uint8_t>()[0]};
    case paddle::framework::proto::VarType::BOOL:
      return {src.template data<bool>()[0]};
    case paddle::framework::proto::VarType::COMPLEX64:
      return {src.template data<complex64>()[0]};
    case paddle::framework::proto::VarType::COMPLEX128:
      return {src.template data<complex128>()[0]};
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Data type error. Don't support casting a %d LoDTensor to Scalar.",
          src.type()));
  }
}

pten::Scalar MakePtenScalarFromVar(const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalar(tmp_tensor);
    } else {
      return MakePtenScalar(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

145
pten::ScalarArray MakePtenScalarArray(const paddle::framework::Tensor& src) {
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
  if (src.type() == paddle::framework::proto::VarType::INT64) {
    return {src.data<int64_t>(), src.numel()};
  } else if (src.type() == paddle::framework::proto::VarType::INT32) {
    return {src.data<int32_t>(), src.numel()};
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to ScalarArray, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        src.type()));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVar(
    const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalarArray(tmp_tensor);
    } else {
      return MakePtenScalarArray(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to ScalarArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return pten::ScalarArray();
  }
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);

  paddle::framework::proto::VarType::Type data_type;
  auto* first_var = variable_list.front();
  if (first_var->IsType<framework::LoDTensor>()) {
    const auto& tensor = first_var->Get<framework::LoDTensor>();
    data_type = tensor.type();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to VectorTensor when call pt "
        "kernel.",
        framework::ToTypeName(first_var->Type())));
  }

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  if (data_type == paddle::framework::proto::VarType::INT64) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }

  } else if (data_type == paddle::framework::proto::VarType::INT32) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to VectorTensor, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        data_type));
  }

  return {vector_data};
}

249 250 251 252 253 254
std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    const framework::Variable& variable, const pten::TensorArgDef& arg_def) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);

  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
255 256 257

    if (tensor.IsInitialized() &&
        !platform::is_same_place(tensor.place(), expected_place)) {
258 259 260 261 262 263
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor);
    }
264
  } else if (variable.IsType<pten::SelectedRows>()) {
265 266
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
267
    const auto& tensor = variable.Get<pten::SelectedRows>();
268 269
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
270 271
      paddle::framework::TensorCopySync(
          tensor.value(), expected_place, &tmp_tensor);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor.value());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
  return {};
}

std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    framework::Variable* variable, const pten::TensorArgDef& arg_def) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
291
    return MakePtenDenseTensor(*tensor, arg_def);
292 293
  } else if (variable->template IsType<pten::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<pten::SelectedRows>();
294 295
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
296
    return MakePtenDenseTensor(tensor->value(), arg_def);
297 298 299 300 301 302 303 304
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
  return {};
}

305
void MovesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
306 307 308 309 310 311 312 313
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move storage."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move storage."));
314
  dst->Resize(src->dims());
315
  dst->set_type(pten::TransToProtoVarType(src->dtype()));
316 317
  auto storage = src->MoveMemoryHolder();
  dst->ResetHolderWithType(storage, pten::TransToProtoVarType(src->dtype()));
318
  dst->set_offset(src->meta().offset);
319 320
}

321 322
void MovesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  MovesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
323
  SetLoD(dst->mutable_lod(), src->lod());
324 325
}

326
void SharesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
327 328 329 330 331 332 333 334
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move allocation."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move allocation."));
335
  dst->Resize(src->dims());
336
  dst->ResetHolderWithType(src->Holder(),
337
                           pten::TransToProtoVarType(src->dtype()));
338
  dst->set_offset(src->meta().offset);
339 340
}

341 342
void SharesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  SharesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
343 344 345
  SetLoD(dst->mutable_lod(), src->lod());
}

346 347
void ReMakePtenDenseTensorBase(const paddle::framework::Tensor& src,
                               pten::DenseTensor* dst) {
348
  VLOG(3) << "ReMakePtenDenseTensor based Tensor.";
349 350
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
351
  meta->dtype = pten::TransToPtenDataType(src.type());
352
  meta->layout = src.layout();
353
  meta->offset = src.offset();
354
  dst->ResetHolder(src.Holder());
355 356
}

357
void ReMakePtenDenseTensor(const paddle::framework::Tensor& src,
358 359
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
360
  SetLoD(&meta->lod, src.lod());
361 362
  ReMakePtenDenseTensorBase(static_cast<const paddle::framework::Tensor&>(src),
                            dst);
363 364
}

365 366 367 368 369 370 371 372 373 374 375 376
static bool IsSameAllocation(const std::shared_ptr<memory::Allocation>& a,
                             const std::shared_ptr<memory::Allocation>& b) {
  return a->ptr() == b->ptr() && a->size() == b->size() &&
         platform::is_same_place(a->place(), b->place());
}

void MakeVariableFromPtenTensor(pten::DenseTensor* src,
                                framework::Variable* variable) {
  if (variable->IsType<framework::LoDTensor>()) {
    auto* tensor = variable->GetMutable<framework::LoDTensor>();

    auto dtype = pten::TransToProtoVarType(src->dtype());
377
    tensor->Resize(src->dims());
378 379 380 381
    SetLoD(tensor->mutable_lod(), src->lod());

    if (!tensor->IsInitialized() ||
        (tensor->IsInitialized() &&
382 383
         !IsSameAllocation(tensor->Holder(), src->Holder()))) {
      tensor->ResetHolderWithType(std::move(src->Holder()), dtype);
384 385 386 387 388 389 390 391
    } else {
      // Even the pten tensor and Variable have the same Alloctation (both have
      // the same pointer address, same size and same place)
      // but there is possible that they do not have the same data_type.
      // so, here we set the variable's type with the pten tensor dtype.
      tensor->set_type(dtype);
    }

392 393
  } else if (variable->IsType<pten::SelectedRows>()) {
    auto* tensor = variable->GetMutable<pten::SelectedRows>();
394 395 396
    auto dtype = pten::TransToProtoVarType(src->dtype());

    if (!tensor->value().IsInitialized()) {
397 398
      tensor->mutable_value()->ResetHolderWithType(std::move(src->Holder()),
                                                   dtype);
399 400 401 402 403 404 405 406
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

407 408 409 410 411 412 413 414
void ResetTensorByArgDef(pten::DenseTensor* dst,
                         const pten::TensorArgDef& arg_def) {
  VLOG(5) << "ResetTensor by TensorArgDef.";
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dtype = arg_def.dtype;
  meta->layout = arg_def.layout;
}

415 416
}  // namespace experimental
}  // namespace paddle