lamb_op.h 25.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <math.h>  // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/memory/buffer.h"
21
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
Y
Yibing Liu 已提交
22 23
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/operators/math/squared_l2_norm.h"
Y
Yibing Liu 已提交
25
#include "paddle/fluid/platform/for_range.h"
26
#include "paddle/pten/kernels/funcs/eigen/extensions.h"
Y
Yibing Liu 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {

namespace scatter = paddle::operators::math::scatter;

33
template <typename T, bool IsMultiPrecision>
34
struct LambMomentREGUpdateFunctor {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  using MT = typename std::conditional<
      IsMultiPrecision, typename details::MPTypeTrait<T>::Type, T>::type;

  MT weight_decay_;
  MT beta1_;
  MT beta2_;
  MT epsilon_;

  MT beta1_pow_;
  MT* beta1_pow_out_;
  MT beta2_pow_;
  MT* beta2_pow_out_;
  const MT* moment1_;
  MT* moment1_out_;
  const MT* moment2_;
  MT* moment2_out_;
51
  const T* grad_;
52 53 54 55 56
  const MT* param_;
  MT* trust_ratio_div_;
  const bool* skip_update_;

  LambMomentREGUpdateFunctor(MT weight_decay, MT beta1, MT beta2, MT epsilon,
57 58 59 60
                             MT beta1_pow, MT beta2_pow, const MT* mom1,
                             MT* mom1_out, const MT* mom2, MT* mom2_out,
                             const T* grad, const MT* param,
                             MT* trust_ratio_div, const bool* skip_update)
61 62 63 64 65 66 67 68 69 70 71 72
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
73 74
        trust_ratio_div_(trust_ratio_div),
        skip_update_(skip_update) {}
75 76

  inline HOSTDEVICE void operator()(size_t i) const {
77
    if (skip_update_ && *skip_update_) return;
78

79 80 81 82 83 84 85 86 87
    MT g = static_cast<MT>(grad_[i]);
    MT mom1 = moment1_[i];
    MT mom2 = moment2_[i];
    MT beta1_pow = beta1_pow_;
    MT beta2_pow = beta2_pow_;
    MT p = param_[i];

    mom1 = beta1_ * mom1 + (static_cast<MT>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<MT>(1) - beta2_) * g * g;
88 89 90 91

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;

92 93
    MT mom1_unbiased = mom1 / (static_cast<MT>(1) - beta1_pow);
    MT mom2_unbiased = mom2 / (static_cast<MT>(1) - beta2_pow);
94
    trust_ratio_div_[i] =
95 96
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
97 98 99
  }
};

100
template <typename T, bool IsMultiPrecision>
101
struct LambMomentMENUpdateFunctor {
102 103 104 105 106 107 108 109 110 111 112 113 114 115
  using MT = typename std::conditional<
      IsMultiPrecision, typename details::MPTypeTrait<T>::Type, T>::type;

  MT weight_decay_;
  MT beta1_;
  MT beta2_;
  MT epsilon_;

  const MT* beta1_pow_;
  const MT* beta2_pow_;
  const MT* moment1_;
  MT* moment1_out_;
  const MT* moment2_;
  MT* moment2_out_;
Y
Yibing Liu 已提交
116
  const T* grad_;
117 118 119 120 121
  const MT* param_;
  MT* trust_ratio_div_;
  const bool* skip_update_;

  LambMomentMENUpdateFunctor(MT weight_decay, MT beta1, MT beta2, MT epsilon,
122
                             const MT* beta1_pow, const MT* beta2_pow,
123 124 125
                             const MT* mom1, MT* mom1_out, const MT* mom2,
                             MT* mom2_out, const T* grad, const MT* param,
                             MT* trust_ratio_div, const bool* skip_update)
Y
Yibing Liu 已提交
126 127 128 129 130 131 132 133 134 135 136 137
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
138 139
        trust_ratio_div_(trust_ratio_div),
        skip_update_(skip_update) {}
Y
Yibing Liu 已提交
140 141

  inline HOSTDEVICE void operator()(size_t i) const {
142 143 144 145 146 147 148
    if (skip_update_ && *skip_update_) return;
    MT g = static_cast<MT>(grad_[i]);
    MT mom1 = moment1_[i];
    MT mom2 = moment2_[i];
    MT beta1_pow = *beta1_pow_;
    MT beta2_pow = *beta2_pow_;
    MT p = param_[i];
Y
Yibing Liu 已提交
149

150 151
    mom1 = beta1_ * mom1 + (static_cast<MT>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<MT>(1) - beta2_) * g * g;
Y
Yibing Liu 已提交
152 153 154

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
155

156 157
    MT mom1_unbiased = mom1 / (static_cast<MT>(1) - beta1_pow);
    MT mom2_unbiased = mom2 / (static_cast<MT>(1) - beta2_pow);
158
    trust_ratio_div_[i] =
159 160
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
Y
Yibing Liu 已提交
161 162 163 164
  }
};

template <typename T>
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
struct SparseLambMomentREGUpdateFunctor {
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  T beta1_pow_;
  T beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

185 186
  const bool* skip_update_;

187
  SparseLambMomentREGUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
188 189 190 191 192 193
                                   T beta1_pow, T beta2_pow, const T* mom1,
                                   T* mom1_out, const T* mom2, T* mom2_out,
                                   const T* grad, const T* param,
                                   T* trust_ratio_div, const int64_t* rows,
                                   int64_t row_numel, int64_t row_count,
                                   const bool* skip_update)
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div),
        rows_(rows),
        row_numel_(row_numel),
209 210
        row_count_(row_count),
        skip_update_(skip_update) {}
211 212 213 214 215 216 217 218 219

  inline HOSTDEVICE void update(size_t i, T g) const {
    // The following code is same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T beta1_pow = beta1_pow_;
    T beta2_pow = beta2_pow_;
    T p = param_[i];

220 221
    mom1 = beta1_ * mom1 + (static_cast<T>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<T>(1) - beta2_) * g * g;
222 223 224 225

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;

226 227
    T mom1_unbiased = mom1 / (static_cast<T>(1) - beta1_pow);
    T mom2_unbiased = mom2 / (static_cast<T>(1) - beta2_pow);
228
    trust_ratio_div_[i] =
229 230
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
231 232 233
  }

  inline HOSTDEVICE void operator()(size_t i) const {
234
    if (skip_update_ && *skip_update_) return;
235 236
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
237 238
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_]
                       : static_cast<T>(0);
239 240 241 242 243 244
    update(i, g);
  }
};

template <typename T>
struct SparseLambMomentMENUpdateFunctor {
Y
Yibing Liu 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  T weight_decay_;
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* grad_;
  const T* param_;
  T* trust_ratio_div_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

264 265
  const bool* skip_update_;

266
  SparseLambMomentMENUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
267
                                   const T* beta1_pow, const T* beta2_pow,
268 269 270
                                   const T* mom1, T* mom1_out, const T* mom2,
                                   T* mom2_out, const T* grad, const T* param,
                                   T* trust_ratio_div, const int64_t* rows,
271 272
                                   int64_t row_numel, int64_t row_count,
                                   const bool* skip_update)
Y
Yibing Liu 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
      : weight_decay_(weight_decay),
        beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        grad_(grad),
        param_(param),
        trust_ratio_div_(trust_ratio_div),
        rows_(rows),
        row_numel_(row_numel),
288 289
        row_count_(row_count),
        skip_update_(skip_update) {}
Y
Yibing Liu 已提交
290 291 292 293 294

  inline HOSTDEVICE void update(size_t i, T g) const {
    // The following code is same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
295 296
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yibing Liu 已提交
297 298
    T p = param_[i];

299 300
    mom1 = beta1_ * mom1 + (static_cast<T>(1) - beta1_) * g;
    mom2 = beta2_ * mom2 + (static_cast<T>(1) - beta2_) * g * g;
Y
Yibing Liu 已提交
301 302 303

    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
304

305 306
    T mom1_unbiased = mom1 / (static_cast<T>(1) - beta1_pow);
    T mom2_unbiased = mom2 / (static_cast<T>(1) - beta2_pow);
307
    trust_ratio_div_[i] =
308 309
        mom1_unbiased / (Eigen::numext::sqrt(mom2_unbiased) + epsilon_) +
        weight_decay_ * p;
Y
Yibing Liu 已提交
310 311 312
  }

  inline HOSTDEVICE void operator()(size_t i) const {
313
    if (skip_update_ && *skip_update_) return;
Y
Yibing Liu 已提交
314 315
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
316 317
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_]
                       : static_cast<T>(0);
Y
Yibing Liu 已提交
318 319 320 321
    update(i, g);
  }
};

322 323 324 325 326 327 328 329 330 331 332
template <typename MT, bool NeedUpdateBetaPow /*=true*/>
struct LambBetaPowUpdateFunctor {
  void SetBetaPows(const MT* beta1pow, const MT* beta2pow, MT* beta1pow_out,
                   MT* beta2pow_out, MT beta1, MT beta2) {
    beta1pow_ = beta1pow;
    beta2pow_ = beta2pow;
    beta1pow_out_ = beta1pow_out;
    beta2pow_out_ = beta2pow_out;
    beta1_ = beta1;
    beta2_ = beta2;
  }
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
  HOSTDEVICE void UpdateBetaPow(size_t i) const {
    if (i == 0) {
      beta1pow_out_[0] = beta1pow_[0] * beta1_;
      beta2pow_out_[0] = beta2pow_[0] * beta2_;
    }
  }

 private:
  const MT* beta1pow_;
  const MT* beta2pow_;
  MT* beta1pow_out_;
  MT* beta2pow_out_;
  MT beta1_;
  MT beta2_;
};

template <typename MT>
struct LambBetaPowUpdateFunctor<MT, /*NeedUpdateBetaPow=*/false> {
  void SetBetaPows(const MT* beta1pow, const MT* beta2pow, MT* beta1pow_out,
                   MT* beta2pow_out, MT beta1, MT beta2) {}
  HOSTDEVICE void UpdateBetaPow(size_t) const {}
};

template <typename T, typename MT, bool IsMultiPrecision, bool UpdateBetaPow>
struct LambParamUpateFunctor
    : public LambBetaPowUpdateFunctor<MT, UpdateBetaPow> {
360
  const MT* lr_;
Y
Yibing Liu 已提交
361
  const T* param_;
362 363 364 365
  const MT* master_param_;
  const MT* param_norm_;
  const MT* trust_ratio_div_;
  const MT* trust_ratio_div_norm_;
Y
Yibing Liu 已提交
366
  T* param_out_;
367 368 369
  MT* master_param_out_;

  const bool* skip_update_;
Y
Yibing Liu 已提交
370

371 372 373 374
  LambParamUpateFunctor(const MT* lr, const T* param, const MT* master_param,
                        const MT* param_norm, const MT* trust_ratio_div,
                        const MT* trust_ratio_div_norm, T* param_out,
                        MT* master_param_out, const bool* skip_update)
Y
Yibing Liu 已提交
375 376
      : lr_(lr),
        param_(param),
377
        master_param_(master_param),
Y
Yibing Liu 已提交
378 379 380
        param_norm_(param_norm),
        trust_ratio_div_(trust_ratio_div),
        trust_ratio_div_norm_(trust_ratio_div_norm),
381 382 383
        param_out_(param_out),
        master_param_out_(master_param_out),
        skip_update_(skip_update) {}
Y
Yibing Liu 已提交
384 385

  inline HOSTDEVICE void operator()(size_t i) const {
386 387
    if (skip_update_ && *skip_update_) return;
    MT lr = *lr_;
S
sneaxiy 已提交
388 389
    MT pn = Eigen::numext::sqrt(*param_norm_);
    MT tn = Eigen::numext::sqrt(*trust_ratio_div_norm_);
390 391 392 393

    MT r = (pn > static_cast<MT>(0) && tn > static_cast<MT>(0))
               ? pn / tn
               : static_cast<MT>(1);
Y
Yibing Liu 已提交
394
    lr *= r;
395 396 397 398 399 400
    MT p = IsMultiPrecision ? master_param_[i] : static_cast<MT>(param_[i]);
    MT param_out = p - lr * trust_ratio_div_[i];
    param_out_[i] = static_cast<T>(param_out);
    if (IsMultiPrecision) {
      master_param_out_[i] = param_out;
    }
401
    this->UpdateBetaPow(i);
Y
Yibing Liu 已提交
402 403 404 405 406 407 408
  }
};

template <typename DeviceContext, typename T>
class LambOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    using MT = typename details::MPTypeTrait<T>::Type;
    bool multi_precision = ctx.Attr<bool>("multi_precision");
    if (multi_precision) {
      ComputeImpl<MT, true>(ctx);
    } else {
      ComputeImpl<T, false>(ctx);
    }
  }

 private:
  template <typename MT, bool IsMultiPrecision>
  void ComputeImpl(const framework::ExecutionContext& ctx) const {
    if (!IsMultiPrecision) {
      constexpr auto kIsSameType = std::is_same<T, MT>::value;
      PADDLE_ENFORCE_EQ(
          kIsSameType, true,
          platform::errors::InvalidArgument(
              "When multi_precision=False, T and MT must be the same type."));
    }
    const auto* skip_update = ctx.Input<framework::LoDTensor>("SkipUpdate");
    const bool* skip_update_flag = skip_update && skip_update->IsInitialized()
                                       ? skip_update->data<bool>()
                                       : nullptr;
    if (skip_update_flag && platform::is_cpu_place(skip_update->place()) &&
        (*skip_update_flag)) {
      return;
    }

    auto weight_decay = static_cast<MT>(ctx.Attr<float>("weight_decay"));
    auto beta1 = static_cast<MT>(ctx.Attr<float>("beta1"));
    auto beta2 = static_cast<MT>(ctx.Attr<float>("beta2"));
    auto epsilon = static_cast<MT>(ctx.Attr<float>("epsilon"));
    const auto& param = GET_DATA_SAFELY(
        ctx.Input<framework::LoDTensor>("Param"), "Input", "Param", "Lamb");
    const auto* grad_var = ctx.InputVar("Grad");
    const auto& mom1 = GET_DATA_SAFELY(
        ctx.Input<framework::LoDTensor>("Moment1"), "Input", "Moment1", "Lamb");
    const auto& mom2 = GET_DATA_SAFELY(
        ctx.Input<framework::LoDTensor>("Moment2"), "Input", "Moment2", "Lamb");
    const auto& lr =
        GET_DATA_SAFELY(ctx.Input<framework::LoDTensor>("LearningRate"),
                        "Input", "LearningRate", "Lamb");

    const auto& beta1_pow =
        GET_DATA_SAFELY(ctx.Input<framework::LoDTensor>("Beta1Pow"), "Input",
                        "Beta1Pow", "Lamb");
    const auto& beta2_pow =
        GET_DATA_SAFELY(ctx.Input<framework::LoDTensor>("Beta2Pow"), "Input",
                        "Beta2Pow", "Lamb");

    auto& param_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("ParamOut"), "Output",
                        "ParamOut", "Lamb");
    auto& mom1_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Moment1Out"),
                        "Output", "Moment1Out", "Lamb");
    auto& mom2_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Moment2Out"),
                        "Output", "Moment2Out", "Lamb");
    auto& beta1_pow_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Beta1PowOut"),
                        "Output", "Beta1PowOut", "Lamb");
    auto& beta2_pow_out =
        GET_DATA_SAFELY(ctx.Output<framework::LoDTensor>("Beta2PowOut"),
                        "Output", "Beta2PowOut", "Lamb");
    const auto* master_param =
        IsMultiPrecision ? ctx.Input<framework::LoDTensor>("MasterParam")
                         : nullptr;
    auto* master_param_out =
        IsMultiPrecision ? ctx.Output<framework::LoDTensor>("MasterParamOut")
                         : nullptr;

    if (IsMultiPrecision) {
      PADDLE_ENFORCE_NOT_NULL(master_param,
                              platform::errors::InvalidArgument(
                                  "Input(MasterParam) must be provided when "
                                  "multi_precision=True."));
      PADDLE_ENFORCE_NOT_NULL(master_param_out,
                              platform::errors::InvalidArgument(
                                  "Output(MasterParamOut) must be provided "
                                  "when multi_precision=True."));
    }
Y
Yibing Liu 已提交
491 492

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
S
sneaxiy 已提交
493 494
    auto numel = param.numel();
    platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
495 496
    auto trust_ratio_div =
        ctx.AllocateTmpTensor<MT, DeviceContext>(param.dims(), dev_ctx);
S
sneaxiy 已提交
497
    auto* trust_ratio_div_ptr = trust_ratio_div.template data<MT>();
498

499
    const void* param_ptr = param.data();
500
    const void* master_param_ptr =
501
        master_param ? master_param->data() : nullptr;
502 503 504 505 506
    void* param_out_ptr = param_out.template mutable_data<T>(ctx.GetPlace());
    void* master_param_out_ptr =
        master_param_out
            ? master_param_out->template mutable_data<MT>(ctx.GetPlace())
            : nullptr;
Y
Yibing Liu 已提交
507 508

    // Update moments
509 510 511 512 513
    bool should_update_beta_pow_later = false;
    const MT *beta1_pow_ptr = nullptr, *beta2_pow_ptr = nullptr;
    MT *beta1_pow_out_ptr = nullptr, *beta2_pow_out_ptr = nullptr;
    VLOG(10) << "Beta1Pow place: " << beta1_pow.place()
             << " , Beta2Pow place: " << beta2_pow.place();
Y
Yibing Liu 已提交
514
    if (grad_var->IsType<framework::LoDTensor>()) {
515
      auto& grad = grad_var->Get<framework::LoDTensor>();
516 517 518
      if (platform::is_gpu_place(ctx.GetPlace()) &&
          beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
519 520
        LambMomentREGUpdateFunctor<T, IsMultiPrecision> moment_update_functor(
            weight_decay, beta1, beta2, epsilon, *beta1_pow.template data<MT>(),
521
            *beta2_pow.template data<MT>(), mom1.template data<MT>(),
522 523 524 525 526 527
            mom1_out.template mutable_data<MT>(ctx.GetPlace()),
            mom2.template data<MT>(),
            mom2_out.template mutable_data<MT>(ctx.GetPlace()),
            grad.template data<T>(),
            static_cast<const MT*>(IsMultiPrecision ? master_param_ptr
                                                    : param_ptr),
S
sneaxiy 已提交
528
            trust_ratio_div_ptr, skip_update_flag);
529
        for_range(moment_update_functor);
530 531 532 533
        beta1_pow_out.template mutable_data<MT>(platform::CPUPlace())[0] =
            beta1 * beta1_pow.template data<MT>()[0];
        beta2_pow_out.template mutable_data<MT>(platform::CPUPlace())[0] =
            beta2 * beta2_pow.template data<MT>()[0];
534
      } else {
535 536 537 538 539 540 541
        beta1_pow_ptr = beta1_pow.template data<MT>();
        beta2_pow_ptr = beta2_pow.template data<MT>();
        beta1_pow_out_ptr =
            beta1_pow_out.template mutable_data<MT>(ctx.GetPlace());
        beta2_pow_out_ptr =
            beta2_pow_out.template mutable_data<MT>(ctx.GetPlace());
        should_update_beta_pow_later = true;
542
        LambMomentMENUpdateFunctor<T, IsMultiPrecision> moment_update_functor(
543 544 545
            weight_decay, beta1, beta2, epsilon,
            static_cast<const MT*>(beta1_pow_ptr),
            static_cast<const MT*>(beta2_pow_ptr), mom1.template data<MT>(),
546 547 548 549 550 551
            mom1_out.template mutable_data<MT>(ctx.GetPlace()),
            mom2.template data<MT>(),
            mom2_out.template mutable_data<MT>(ctx.GetPlace()),
            grad.template data<T>(),
            static_cast<const MT*>(IsMultiPrecision ? master_param_ptr
                                                    : param_ptr),
S
sneaxiy 已提交
552
            trust_ratio_div_ptr, skip_update_flag);
553 554
        for_range(moment_update_functor);
      }
555
    } else if (grad_var->IsType<pten::SelectedRows>()) {
556 557 558
      PADDLE_ENFORCE_EQ(IsMultiPrecision, false,
                        platform::errors::Unimplemented(
                            "SelectedRows gradient is not supported when "
559 560 561 562 563 564
                            "multi_precision=True."));
      constexpr bool kIsSameType = std::is_same<T, MT>::value;
      PADDLE_ENFORCE_EQ(kIsSameType, true,
                        platform::errors::Unimplemented(
                            "SelectedRows gradient is not supported when "
                            "multi_precision=True."));
565
      auto& grad = GET_DATA_SAFELY(ctx.Input<pten::SelectedRows>("Grad"),
566
                                   "Input", "Grad", "Lamb");
Y
Yibing Liu 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580
      if (grad.rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

581 582
      pten::SelectedRows tmp_grad_merge;
      const pten::SelectedRows* grad_merge_ptr;
Y
Yibing Liu 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(dev_ctx, grad, &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
      }

      auto& grad_merge = *grad_merge_ptr;
      auto& grad_tensor = grad_merge.value();
      const T* grad_data = grad_tensor.template data<T>();
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
598 599 600 601
      if (platform::is_gpu_place(ctx.GetPlace()) &&
          beta1_pow.place() == platform::CPUPlace() &&
          beta2_pow.place() == platform::CPUPlace()) {
        SparseLambMomentREGUpdateFunctor<T> moment_update_functor(
602 603
            static_cast<T>(weight_decay), static_cast<T>(beta1),
            static_cast<T>(beta2), static_cast<T>(epsilon),
604 605
            *beta1_pow.template data<T>(), *beta2_pow.template data<T>(),
            mom1.template data<T>(),
606 607 608 609
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
            param.template data<T>(), trust_ratio_div.template data<T>(), rows,
610
            row_numel, grad_merge.rows().size(), skip_update_flag);
611 612
        for_range(moment_update_functor);
        beta1_pow_out.template mutable_data<T>(platform::CPUPlace())[0] =
613
            static_cast<T>(beta1) * beta1_pow.template data<T>()[0];
614
        beta2_pow_out.template mutable_data<T>(platform::CPUPlace())[0] =
615
            static_cast<T>(beta2) * beta2_pow.template data<T>()[0];
616
      } else {
617 618 619 620 621 622 623
        beta1_pow_ptr = beta1_pow.template data<MT>();
        beta2_pow_ptr = beta2_pow.template data<MT>();
        beta1_pow_out_ptr =
            beta1_pow_out.template mutable_data<MT>(ctx.GetPlace());
        beta2_pow_out_ptr =
            beta2_pow_out.template mutable_data<MT>(ctx.GetPlace());
        should_update_beta_pow_later = true;
624
        SparseLambMomentMENUpdateFunctor<T> moment_update_functor(
625 626
            static_cast<T>(weight_decay), static_cast<T>(beta1),
            static_cast<T>(beta2), static_cast<T>(epsilon),
627 628
            reinterpret_cast<const T*>(beta1_pow_ptr),
            reinterpret_cast<const T*>(beta2_pow_ptr), mom1.template data<T>(),
629 630 631 632
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
            param.template data<T>(), trust_ratio_div.template data<T>(), rows,
633
            row_numel, grad_merge.rows().size(), skip_update_flag);
634 635
        for_range(moment_update_functor);
      }
Y
Yibing Liu 已提交
636
    } else {
637 638 639
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Variable type not supported by lamb_op. Expect LoDTensor or "
          "SelectedRows, but got %s",
640
          framework::ToTypeName(grad_var->Type())));
Y
Yibing Liu 已提交
641 642 643
    }

    // Update parameter
644
    auto p_norm_t = ctx.AllocateTmpTensor<MT, DeviceContext>({1}, dev_ctx);
S
sneaxiy 已提交
645 646
    auto* p_norm_ptr = p_norm_t.template data<MT>();

647 648
    auto trust_ratio_div_norm_t =
        ctx.AllocateTmpTensor<MT, DeviceContext>({1}, dev_ctx);
S
sneaxiy 已提交
649
    auto* trust_ratio_div_norm_ptr = trust_ratio_div_norm_t.template data<MT>();
Y
Yibing Liu 已提交
650

651 652
    // TODO(zengjinle): remove the following Eigen operations when
    // *skip_update == true.
S
sneaxiy 已提交
653 654 655 656 657 658 659
    memory::Buffer buffer(dev_ctx.GetPlace());
    math::SquaredL2Norm(
        dev_ctx, reinterpret_cast<const MT*>(IsMultiPrecision ? master_param_ptr
                                                              : param_ptr),
        p_norm_ptr, numel, &buffer);
    math::SquaredL2Norm(dev_ctx, trust_ratio_div_ptr, trust_ratio_div_norm_ptr,
                        numel, &buffer);
660

661 662 663 664 665
#define CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(__should_update_beta_pow)         \
  do {                                                                       \
    LambParamUpateFunctor<T, MT, IsMultiPrecision, __should_update_beta_pow> \
    param_update_functor(                                                    \
        lr.template data<MT>(), static_cast<const T*>(param_ptr),            \
S
sneaxiy 已提交
666 667
        static_cast<const MT*>(master_param_ptr), p_norm_ptr,                \
        trust_ratio_div_ptr, trust_ratio_div_norm_ptr,                       \
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        static_cast<T*>(param_out_ptr),                                      \
        static_cast<MT*>(master_param_out_ptr), skip_update_flag);           \
    if (__should_update_beta_pow) {                                          \
      param_update_functor.SetBetaPows(beta1_pow_ptr, beta2_pow_ptr,         \
                                       beta1_pow_out_ptr, beta2_pow_out_ptr, \
                                       beta1, beta2);                        \
    }                                                                        \
    for_range(param_update_functor);                                         \
  } while (0)

    if (should_update_beta_pow_later) {
      CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(true);
    } else {
      CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC(false);
    }

#undef CALL_PADDLE_UPDATE_LAMB_PARAM_FUNC
Y
Yibing Liu 已提交
685 686 687 688 689
  }
};

}  // namespace operators
}  // namespace paddle