elementwise_div_op.cu 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
Wu Yi 已提交
14
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
15 16
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
17 18
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
20 21

namespace ops = paddle::operators;
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

template <typename T>
struct SameDimsElemwiseDiv<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    DivRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseDiv<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
46 47 48
    dim3 grid_size = dim3(((size + 1) / 2 + PADDLE_CUDA_THREAD_SIZE - 1) /
                              PADDLE_CUDA_THREAD_SIZE,
                          1);
49 50 51 52 53 54 55
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseDivCUDAKernel<<<
56
        grid_size, block_size, 0,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

template <typename T>
static __global__ void SimpleElemwiseDivGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = o / y[col];
    dy[col] = -o * out[col] / y[col];
    col += blockDim.x * gridDim.x;
  }
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
template <>
__global__ void SimpleElemwiseDivGradCUDAKernel<paddle::platform::complex64>(
    const paddle::platform::complex64* x, const paddle::platform::complex64* y,
    const paddle::platform::complex64* out,
    const paddle::platform::complex64* dout, int64_t size,
    paddle::platform::complex64* dx, paddle::platform::complex64* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    paddle::platform::complex64 o = dout[col];
    paddle::platform::complex64 y_conj(y[col].real, -y[col].imag);
    paddle::platform::complex64 out_div_y_conj((out[col] / y[col]).real,
                                               -(out[col] / y[col]).imag);
    dx[col] = o / y_conj;
    dy[col] = -o * out_div_y_conj;
    col += blockDim.x * gridDim.x;
  }
}

template <>
__global__ void SimpleElemwiseDivGradCUDAKernel<paddle::platform::complex128>(
    const paddle::platform::complex128* x,
    const paddle::platform::complex128* y,
    const paddle::platform::complex128* out,
    const paddle::platform::complex128* dout, int64_t size,
    paddle::platform::complex128* dx, paddle::platform::complex128* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    paddle::platform::complex128 o = dout[col];
    paddle::platform::complex128 y_conj(y[col].real, -y[col].imag);
    paddle::platform::complex128 out_div_y_conj((out[col] / y[col]).real,
                                                -(out[col] / y[col]).imag);
    dx[col] = o / y_conj;
    dy[col] = -o * out_div_y_conj;
    col += blockDim.x * gridDim.x;
  }
}

117 118 119 120 121 122 123 124 125 126
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
127
  dim3 grid_size =
128 129
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseDivGradCUDAKernel<
130
      T><<<grid_size, block_size, 0,
131 132 133 134 135 136 137
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
138

Q
QI JUN 已提交
139
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
140
    elementwise_div,
Q
QI JUN 已提交
141
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, float>,
W
Wu Yi 已提交
142 143
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
144 145
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int>,
146 147 148 149 150
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::complex64>,
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::complex128>);
Q
QI JUN 已提交
151
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
152
    elementwise_div_grad,
Q
QI JUN 已提交
153
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, float>,
W
Wu Yi 已提交
154 155
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
156 157
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, int>,
158 159 160
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::complex64>,
Q
QI JUN 已提交
161
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
162
                                  paddle::platform::complex128>);
163 164 165 166
REGISTER_OP_CUDA_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
167 168
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::float16>,
169 170 171 172 173
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
174 175 176 177 178
                                        int64_t>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::complex64>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::complex128>);