adagrad_op.cc 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/adagrad_op.h"
16
#include <vector>
17

Q
QI JUN 已提交
18 19
#include <cmath>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
QI JUN 已提交
22

23 24 25
namespace paddle {
namespace operators {

D
dzhwinter 已提交
26
using Tensor = framework::Tensor;
27 28 29 30
class AdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Q
QI JUN 已提交
31
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kexin Zhao 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
                   "Input(Moment) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of AdagradOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
                   "Output(MomentOut) of AdagradOp should not be null.");

    auto lr_dims = ctx->GetInputDim("LearningRate");
47
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
K
Kexin Zhao 已提交
48 49
                      "LearningRate should have one element");
    auto param_dims = ctx->GetInputDim("Param");
50
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
51 52
        param_dims, ctx->GetInputDim("Grad"),
        "Param and Grad input of AdagradOp should have the same dimension.");
53
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
54 55
        param_dims, ctx->GetInputDim("Moment"),
        "Param and Moment input of AdagradOp should have the same dimension.");
56

K
Kexin Zhao 已提交
57 58
    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
59
  }
D
dzhwinter 已提交
60 61 62 63 64 65
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("Param")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
66 67 68 69
};

class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
70
  AdagradOpMaker(OpProto* proto, OpAttrChecker* op_checker)
71
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
Kexin Zhao 已提交
72 73 74 75 76 77 78 79 80 81 82 83
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("Moment", "(Tensor) Second moment");
    AddInput("LearningRate", "(Tensor) Learning rate");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output second moment");

    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-6f);
84 85 86 87
    AddComment(R"DOC(

Adaptive Gradient Algorithm (Adagrad).

88 89
The update is done as follows:

90 91
$$moment\_out = moment + grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
92
$$
93 94

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
95 96 97
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
98 99 100 101

)DOC");
  }
};
Q
QI JUN 已提交
102 103 104 105 106 107 108 109

namespace {
size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
  return std::find(rows.begin(), rows.end(), value) - rows.begin();
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
110 111
struct SparseAdagradFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
112 113 114 115 116
                  const framework::SelectedRows& grad,
                  const framework::Tensor& learning_rate, T epsilon,
                  framework::Tensor* moment, framework::Tensor* param) {
    // 1. g_m.rows = set(g.rows)
    auto grad_width = grad.value().dims()[1];
T
wip  
typhoonzero 已提交
117 118 119 120
    math::scatter::MergeAdd<platform::CPUDeviceContext, T> merge_func;
    auto grad_merge = merge_func(context, grad);
    auto& merge_rows = grad_merge.rows();
    auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();
Q
QI JUN 已提交
121 122

    // 2. m += g_m * g_m
T
wip  
typhoonzero 已提交
123 124
    math::scatter::Mul<platform::CPUDeviceContext, T> sqare_func;
    auto grad_square = sqare_func(context, grad_merge, grad_merge);
Q
QI JUN 已提交
125

Q
QI JUN 已提交
126
    math::SelectedRowsAddToTensor<platform::CPUDeviceContext, T> functor;
T
wip  
typhoonzero 已提交
127
    functor(context, grad_square, moment);
Q
QI JUN 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

    // 3. update parameter
    auto* lr = learning_rate.data<T>();
    auto* param_data = param->data<T>();
    auto* moment_data = moment->data<T>();

    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (int64_t j = 0; j < grad_width; j++) {
        param_data[merge_rows[i] * grad_width + j] -=
            lr[0] * grad_merge_data[i * grad_width + j] /
            (std::sqrt(moment_data[merge_rows[i] * grad_width + j]) + epsilon);
      }
    }
  }
};

Q
QI JUN 已提交
144 145
template struct SparseAdagradFunctor<platform::CPUDeviceContext, float>;
template struct SparseAdagradFunctor<platform::CPUDeviceContext, double>;
146 147 148 149 150
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
Q
QI JUN 已提交
151
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
152 153
    adagrad, ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, double>);