kthvalue_grad_kernel.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/kthvalue_grad_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
19
#include "paddle/phi/core/tensor_utils.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {
template <typename T, typename Type>
static void kthvalueAssign(const Type& input_height,
                           const Type& input_width,
                           const int& input_dim,
                           const DenseTensor* input,
                           const DenseTensor* indices,
                           T* output_data) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (Type i = 0; i < input_height; ++i) {
    if (input_dim == 1) {
      auto e_input = EigenVector<T>::Flatten(*input);
      auto e_indices = EigenVector<Type>::Flatten(*indices);
      output_data[i * input_width + e_indices(0)] = e_input(0);
    } else {
      auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
      auto e_indices = EigenMatrix<Type>::Reshape(*indices, input_dim - 1);
      output_data[i * input_width + e_indices(i, 0)] = e_input(i, 0);
    }
  }
}

template <typename T, typename Context>
void KthvalueGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& indices,
51
                        const DenseTensor& d_out,
52 53 54 55 56 57
                        int k,
                        int axis,
                        bool keepdim,
                        DenseTensor* d_x) {
  auto in_dims = x.dims();
  auto out_dims = indices.dims();
58 59 60 61 62 63 64 65
  T* x_grad_data = dev_ctx.template Alloc<T>(d_x);

  // For 0D Tensor
  if (in_dims.size() == 0) {
    phi::funcs::set_constant(dev_ctx, d_x, 1.0);
    return;
  }

66 67 68 69 70 71 72 73 74 75 76 77
  axis = (axis < 0) ? (in_dims.size() + axis) : axis;
  if (!keepdim) {
    std::vector<int> tmp_out_shape;
    for (int i = 0; i < axis; i++) {
      tmp_out_shape.emplace_back(out_dims[i]);
    }
    tmp_out_shape.emplace_back(1);
    for (int i = axis + 1; i < in_dims.size(); i++) {
      tmp_out_shape.emplace_back(out_dims[i - 1]);
    }
    out_dims = phi::make_ddim(tmp_out_shape);
  }
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  if (axis == in_dims.size() - 1) {
    const int64_t input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t input_width = in_dims[in_dims.size() - 1];
    memset(x_grad_data, 0, d_x->numel() * sizeof(T));
    if (keepdim) {
      kthvalueAssign(input_height,
                     input_width,
                     in_dims.size(),
                     &d_out,
                     &indices,
                     x_grad_data);
    } else {
      DenseTensor out_grad_tmp, indices_tmp;
      out_grad_tmp.Resize(d_out.dims());
      indices_tmp.Resize(indices.dims());
      dev_ctx.template Alloc<T>(&out_grad_tmp);
      dev_ctx.template Alloc<int64_t>(&indices_tmp);
      Copy(dev_ctx, d_out, dev_ctx.GetPlace(), false, &out_grad_tmp);
      Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &indices_tmp);
      out_grad_tmp.Resize(out_dims);
      indices_tmp.Resize(out_dims);
      kthvalueAssign(input_height,
                     input_width,
                     in_dims.size(),
                     &out_grad_tmp,
                     &indices_tmp,
                     x_grad_data);
    }
  } else {
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(out_dims.size() - 1);
    for (int i = axis + 1; i < out_dims.size() - 1; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(axis);
    DDim trans_dims(out_dims);
    DDim trans_in_dims(in_dims);
    for (size_t i = 0; i < trans.size(); i++) {
      trans_dims[i] = out_dims[trans[i]];
      trans_in_dims[i] = in_dims[trans[i]];
    }
    DenseTensor trans_dO, trans_ind;
    trans_dO.Resize(trans_dims);
    trans_ind.Resize(trans_dims);
    dev_ctx.template Alloc<T>(&trans_dO);
    dev_ctx.template Alloc<int64_t>(&trans_ind);
    int ndims = trans.size();
    if (keepdim) {
      funcs::TransCompute<phi::CPUContext, T>(
          ndims, dev_ctx, d_out, &trans_dO, trans);
      funcs::TransCompute<phi::CPUContext, int64_t>(
          ndims, dev_ctx, indices, &trans_ind, trans);
    } else {
      DenseTensor out_grad_tmp, indices_tmp;
      out_grad_tmp.Resize(d_out.dims());
      indices_tmp.Resize(indices.dims());
      dev_ctx.template Alloc<T>(&out_grad_tmp);
      dev_ctx.template Alloc<int64_t>(&indices_tmp);
      Copy(dev_ctx, d_out, dev_ctx.GetPlace(), false, &out_grad_tmp);
      Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &indices_tmp);
      out_grad_tmp.Resize(out_dims);
      indices_tmp.Resize(out_dims);
      funcs::TransCompute<phi::CPUContext, T>(
          ndims, dev_ctx, out_grad_tmp, &trans_dO, trans);
      funcs::TransCompute<phi::CPUContext, int64_t>(
          ndims, dev_ctx, indices_tmp, &trans_ind, trans);
    }
    const int64_t input_height = phi::product(
        phi::slice_ddim(trans_in_dims, 0, trans_in_dims.size() - 1));
    const int64_t input_width = trans_in_dims[trans_in_dims.size() - 1];
    DenseTensor tmp_out;
    tmp_out.Resize(trans_in_dims);
    T* t_out = dev_ctx.template Alloc<T>(&tmp_out);
    memset(t_out, 0, d_x->numel() * sizeof(T));
    kthvalueAssign<T, int64_t>(input_height,
                               input_width,
                               in_dims.size(),
                               &trans_dO,
                               &trans_ind,
                               t_out);
    funcs::TransCompute<phi::CPUContext, T>(
        ndims, dev_ctx, tmp_out, d_x, trans);
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(kthvalue_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::KthvalueGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}