pool_op_xpu.cc 9.5 KB
Newer Older
D
Double_V 已提交
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
From00 已提交
11

D
Double_V 已提交
12
#include <unordered_map>
13

F
From00 已提交
14 15
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
D
Double_V 已提交
16 17 18 19 20

#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {

F
From00 已提交
21 22
using framework::Tensor;

23 24
xpu::Pooling_t XPUPoolingType(const std::string& pooltype,
                              bool exclusive,
D
Double_V 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38
                              bool is_test) {
  if (pooltype == "max") {
    return xpu::Pooling_t::MAX_WITHOUT_INDEX;
  } else if (pooltype == "avg") {
    if (exclusive) {
      return xpu::Pooling_t::AVG_WITHOUT_PAD;
    } else {
      return xpu::Pooling_t::AVG_WITH_PAD;
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Pool op only supports 2D and 3D input."));
  }
}
39

D
Double_V 已提交
40 41
template <typename DeviceContext, typename T>
class PoolXPUKernel : public framework::OpKernel<T> {
42 43
  using XPUType = typename XPUTypeTrait<T>::Type;

D
Double_V 已提交
44 45 46 47 48 49 50 51 52 53
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    Tensor* out = context.Output<Tensor>("Out");
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
54
    PADDLE_ENFORCE_EQ(
55 56
        ksize.size(),
        2,
57 58
        platform::errors::InvalidArgument(
            "The Pool2d XPU OP only support 2 dimension pooling!"));
59 60
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1),
                      true,
61 62 63
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
D
Double_V 已提交
64
    int* index_data = nullptr;
65 66 67
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
68 69 70 71 72
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
73 74
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
75 76
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
77
    auto input = reinterpret_cast<const XPUType*>(in_x->data<T>());
D
Double_V 已提交
78
    out->mutable_data<T>(context.GetPlace());
79
    auto output = reinterpret_cast<XPUType*>(out->data<T>());
D
Double_V 已提交
80
    auto& dev_ctx = context.template device_context<DeviceContext>();
81 82
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
83 84 85 86 87 88 89 90 91 92 93 94
      r = xpu::max_pool2d<XPUType>(dev_ctx.x_context(),
                                   input,
                                   output,
                                   index_data,
                                   n,
                                   c,
                                   in_h,
                                   in_w,
                                   ksize,
                                   strides,
                                   paddings,
                                   true);
95
    } else if (pooling_type == "avg") {
96 97 98 99 100 101 102 103 104 105 106 107
      r = xpu::avg_pool2d<XPUType>(dev_ctx.x_context(),
                                   input,
                                   output,
                                   n,
                                   c,
                                   in_h,
                                   in_w,
                                   ksize,
                                   strides,
                                   paddings,
                                   !exclusive,
                                   true);
108 109 110 111
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
112 113
    PADDLE_ENFORCE_EQ(r,
                      xpu::Error_t::SUCCESS,
114
                      platform::errors::External(
115 116
                          "The pool2d XPU API return wrong value[%d %s]",
                          r,
117
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
118 119
  }
};
120

D
Double_V 已提交
121 122
template <typename DeviceContext, typename T>
class PoolGradXPUKernel : public framework::OpKernel<T> {
123 124
  using XPUType = typename XPUTypeTrait<T>::Type;

D
Double_V 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* in_x = context.Input<Tensor>("X");
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
    std::string pooling_type = context.Attr<std::string>("pooling_type");
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    bool exclusive = context.Attr<bool>("exclusive");
    bool adaptive = context.Attr<bool>("adaptive");
    const int* index_data = nullptr;
139
    PADDLE_ENFORCE_EQ(
140 141
        ksize.size(),
        2,
142 143 144 145
        platform::errors::InvalidArgument("The Pool2d XPU OP only support 2 "
                                          "dimension pooling!, but received "
                                          "%d-dimension pool kernel size",
                                          ksize.size()));
146 147
    PADDLE_ENFORCE_EQ(!adaptive || (ksize[0] * ksize[1] == 1),
                      true,
148 149 150 151 152 153
                      platform::errors::InvalidArgument(
                          "The Pool2d XPU OP does not support (adaptive == "
                          "true && output_size != 1)"));
    bool global_pooling = context.Attr<bool>("global_pooling") ||
                          (adaptive && (ksize[0] * ksize[1] == 1));
    if (global_pooling) {
D
Double_V 已提交
154 155 156 157 158 159 160 161
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
        ksize[i] = static_cast<int>(in_x->dims()[i + 2]);
      }
    }
    if (!in_x_grad) {
      return;
    }
162 163
    const int n = in_x->dims()[0];
    const int c = in_x->dims()[1];
D
Double_V 已提交
164 165
    const int in_h = in_x->dims()[2];
    const int in_w = in_x->dims()[3];
166 167 168
    auto input = reinterpret_cast<const XPUType*>(in_x->data<T>());
    auto output = reinterpret_cast<const XPUType*>(out->data<T>());
    auto output_grad = reinterpret_cast<const XPUType*>(out_grad->data<T>());
D
Double_V 已提交
169
    in_x_grad->mutable_data<T>(context.GetPlace());
170
    auto input_grad = reinterpret_cast<XPUType*>(in_x_grad->data<T>());
D
Double_V 已提交
171
    auto& dev_ctx = context.template device_context<DeviceContext>();
172 173
    int r = xpu::Error_t::SUCCESS;
    if (pooling_type == "max") {
174 175 176 177 178 179 180 181 182 183 184 185 186 187
      r = xpu::max_pool2d_grad<XPUType>(dev_ctx.x_context(),
                                        input,
                                        output,
                                        index_data,
                                        output_grad,
                                        input_grad,
                                        n,
                                        c,
                                        in_h,
                                        in_w,
                                        ksize,
                                        strides,
                                        paddings,
                                        true);
188
    } else if (pooling_type == "avg") {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
      r = xpu::avg_pool2d_grad<XPUType>(dev_ctx.x_context(),
                                        input,
                                        output,
                                        output_grad,
                                        input_grad,
                                        n,
                                        c,
                                        in_h,
                                        in_w,
                                        ksize,
                                        strides,
                                        paddings,
                                        !exclusive,
                                        true);
203 204 205 206
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported pooling type for kunlun ", pooling_type));
    }
207 208
    PADDLE_ENFORCE_EQ(r,
                      xpu::Error_t::SUCCESS,
209
                      platform::errors::External(
210 211
                          "The Pool2dGrad XPU OP return wrong value[%d %s]",
                          r,
212
                          XPUAPIErrorMsg[r]));
D
Double_V 已提交
213 214 215 216 217 218 219 220
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
221 222
    pool2d,
    ops::PoolXPUKernel<paddle::platform::XPUDeviceContext, float>,
223 224
    ops::PoolXPUKernel<paddle::platform::XPUDeviceContext,
                       paddle::platform::float16>);
D
Double_V 已提交
225 226
REGISTER_OP_XPU_KERNEL(
    pool2d_grad,
227 228 229
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::PoolGradXPUKernel<paddle::platform::XPUDeviceContext,
                           paddle::platform::float16>);
D
Double_V 已提交
230 231

#endif