test_communicator_geo.py 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17 18
import os
import sys
19
import time
20
import threading
21 22
import subprocess
import unittest
23
import numpy
24

25
import paddle
26 27
import paddle.fluid as fluid

28
import paddle.distributed.fleet.base.role_maker as role_maker
29
import paddle.distributed.fleet as fleet
30

R
Roc 已提交
31
from paddle.distributed.utils.launch_utils import find_free_ports
T
tangwei12 已提交
32

P
pangyoki 已提交
33 34
paddle.enable_static()

35

36
class TestCommunicatorGeoEnd2End(unittest.TestCase):
37

38 39
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
40 41 42 43 44 45 46 47 48 49 50 51 52
        x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)

        emb = fluid.layers.embedding(
            input=x1,
            size=[10000, 10],
            param_attr=fluid.ParamAttr(
                name="embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)

        pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
        z = fluid.layers.concat(input=[x, pool], axis=1)
        y_predict = fluid.layers.fc(input=z, size=1, act=None)
53 54 55
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
56
        avg_cost = paddle.mean(cost)
57
        return avg_cost, x, x1, y
58

59
    def fake_reader(self):
60

61 62 63
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
64
                z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
65
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
66
                yield x, z, y
67

68
        return reader
69

70 71
    def run_pserver(self, role, strategy):
        fleet.init(role)
72
        avg_cost, x, z, y = self.net()
73
        optimizer = fluid.optimizer.SGD(0.01)
74 75
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
76

77 78 79 80 81 82 83 84
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
85
        avg_cost, x, z, y = self.net()
86
        optimizer = fluid.optimizer.SGD(0.01)
87 88 89
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

90
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
91
        fleet.init_worker()
92 93

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
94
        feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
95 96

        for batch_id, data in enumerate(train_reader()):
97 98 99
            exe.run(fluid.default_main_program(),
                    feed=feeder.feed(data),
                    fetch_list=[])
100

101
        fleet.stop_worker()
102

103 104 105
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

106 107 108 109
        os.environ["PADDLE_PSERVER_NUMS"] = "1"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
T
tangwei12 已提交
110
        os.environ["POD_IP"] = "127.0.0.1"
111

112 113
        role = role_maker.PaddleCloudRoleMaker()

114
        strategy = paddle.distributed.fleet.DistributedStrategy()
115 116
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": 100}
C
Chengmo 已提交
117
        strategy.a_sync_configs = {"launch_barrier": False}
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """
from __future__ import print_function

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
143
import paddle.distributed.fleet as fleet
144 145 146

from test_communicator_geo import TestCommunicatorGeoEnd2End

P
pangyoki 已提交
147
paddle.enable_static()
148 149 150 151 152 153 154 155 156 157 158 159 160 161

class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
T
tangwei12 已提交
162 163 164

        port = find_free_ports(1).pop()

165
        os.environ["TRAINING_ROLE"] = "PSERVER"
T
tangwei12 已提交
166 167
        os.environ["PADDLE_PORT"] = str(port)
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:{}".format(port)
168 169 170 171

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
T
tangwei12 已提交
172

173 174 175
        ps_proc = subprocess.Popen(ps_cmd.strip().split(" "),
                                   stdout=subprocess.PIPE,
                                   stderr=subprocess.PIPE)
176

T
tangwei12 已提交
177
        time.sleep(5)
178

179
        os.environ["TRAINING_ROLE"] = "TRAINER"
180

181 182
        self.run_ut()
        ps_proc.kill()
T
tangwei12 已提交
183
        ps_proc.wait()
T
tangwei12 已提交
184
        outs, errs = ps_proc.communicate()
185

186 187
        if os.path.exists(server_file):
            os.remove(server_file)
188

189 190 191

if __name__ == '__main__':
    unittest.main()