test_fill_constant_op.py 15.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20

21
import paddle
T
tangwei12 已提交
22 23
import paddle.fluid.core as core
from paddle.fluid.op import Operator
24 25
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
T
tangwei12 已提交
26

27

L
liym27 已提交
28
# Situation 1: Attr(shape) is a list(without tensor)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class TestFillConstantOp1(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class TestFillConstantOp3(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int64 value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
class TestFillConstantOp5(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(name="X", shape=[1], dtype="float32")
            out = paddle.zeros(shape=[1], out=data, dtype="float32")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result = exe.run(feed={"X": np.array(
                [0.1], dtype="float32")},
                             fetch_list=[data, out])
            self.assertEqual(result[0], result[1])
        with fluid.program_guard(fluid.Program()):
            data = fluid.data(name="X", shape=[1], dtype="float32")
            out = paddle.ones(shape=[1], out=data, dtype="float32")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result = exe.run(feed={"X": np.array(
                [0.1], dtype="float32")},
                             fetch_list=[data, out])
            self.assertEqual(result[0], result[1])


107
class TestFillConstantOpWithSelectedRows(unittest.TestCase):
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116 117 118
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
        fill_constant_op = Operator(
            "fill_constant", shape=[123, 92], value=3.8, Out='Out')
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
119 120 121 122
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

        self.assertTrue(np.array_equal(result_array, full_array))
T
tangwei12 已提交
123 124 125

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
126 127 128
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
129 130 131 132
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


W
wangchaochaohu 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
# Situation 4: value is a tensor
class TestFillConstantOp1_ValueTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("float32")
        }
        self.attrs = {'value': self.value + 1.0}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output()


# Situation 5: value is a tensor
class TestFillConstantOp2_ValueTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {
            "ShapeTensor": np.array(self.shape).astype("int32"),
            'ValueTensor': np.array([self.value]).astype("int32")
        }
        self.attrs = {'value': self.value, 'dtype': 2}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3
        self.dtype = np.int32

    def test_check_output(self):
        self.check_output()


263
# Test python API
264
class TestFillConstantAPI(unittest.TestCase):
L
liym27 已提交
265
    def test_api(self):
266 267 268 269 270 271 272 273
        positive_2_int32 = fluid.layers.fill_constant([1], "int32", 2)

        positive_2_int64 = fluid.layers.fill_constant([1], "int64", 2)
        shape_tensor_int32 = fluid.data(
            name="shape_tensor_int32", shape=[2], dtype="int32")

        shape_tensor_int64 = fluid.data(
            name="shape_tensor_int64", shape=[2], dtype="int64")
L
liym27 已提交
274 275 276

        out_1 = fluid.layers.fill_constant(
            shape=[1, 2], dtype="float32", value=1.1)
277

L
liym27 已提交
278
        out_2 = fluid.layers.fill_constant(
279
            shape=[1, positive_2_int32], dtype="float32", value=1.1)
L
liym27 已提交
280 281

        out_3 = fluid.layers.fill_constant(
282 283 284 285 286 287 288
            shape=[1, positive_2_int64], dtype="float32", value=1.1)

        out_4 = fluid.layers.fill_constant(
            shape=shape_tensor_int32, dtype="float32", value=1.1)

        out_5 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype="float32", value=1.1)
L
liym27 已提交
289

290 291 292
        out_6 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=1.1)

W
wangchaochaohu 已提交
293 294 295 296
        val = fluid.layers.fill_constant(shape=[1], dtype=np.float32, value=1.1)
        out_7 = fluid.layers.fill_constant(
            shape=shape_tensor_int64, dtype=np.float32, value=val)

L
liym27 已提交
297
        exe = fluid.Executor(place=fluid.CPUPlace())
W
wangchaochaohu 已提交
298
        res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
L
liym27 已提交
299
            fluid.default_main_program(),
300 301 302 303
            feed={
                "shape_tensor_int32": np.array([1, 2]).astype("int32"),
                "shape_tensor_int64": np.array([1, 2]).astype("int64"),
            },
W
wangchaochaohu 已提交
304
            fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
L
liym27 已提交
305 306 307 308

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))
309 310
        assert np.array_equal(res_4, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_5, np.full([1, 2], 1.1, dtype="float32"))
311
        assert np.array_equal(res_6, np.full([1, 2], 1.1, dtype="float32"))
W
wangchaochaohu 已提交
312
        assert np.array_equal(res_7, np.full([1, 2], 1.1, dtype="float32"))
L
liym27 已提交
313 314


315
class TestFillConstantOpError(unittest.TestCase):
316 317
    def test_errors(self):
        with program_guard(Program(), Program()):
L
liym27 已提交
318
            #for ci coverage
319 320 321 322 323 324 325 326
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
            self.assertRaises(
                ValueError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint4')
            self.assertRaises(
327
                TypeError,
328 329 330 331 332
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='int16',
                out=x1)
333 334

            # The argument dtype of fill_constant_op must be one of bool, float16,
335 336
            #float32, float64, int32 or int64
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint8')
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='float64',
                out=x2)

352
            # The argument shape's type of fill_constant_op must be list, tuple or Variable.
L
liym27 已提交
353 354 355 356 357
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

358
            # The argument shape's size of fill_constant_op must not be 0.
L
liym27 已提交
359 360 361 362 363
            def test_shape_size():
                fluid.layers.fill_constant(shape=[], dtype="float32", value=1)

            self.assertRaises(AssertionError, test_shape_size)

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
            # The shape dtype of fill_constant_op must be int32 or int64.
            def test_shape_tensor_dtype():
                shape = fluid.data(
                    name="shape_tensor", shape=[2], dtype="float32")
                fluid.layers.fill_constant(
                    shape=shape, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_tensor_dtype)

            def test_shape_tensor_list_dtype():
                shape = fluid.data(
                    name="shape_tensor_list", shape=[1], dtype="bool")
                fluid.layers.fill_constant(
                    shape=[shape, 2], dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_tensor_list_dtype)

381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
class ApiZerosTest(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            zeros = paddle.zeros(shape=[10], dtype="float64")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(fetch_list=[zeros])
            expected_result = np.zeros(10, dtype="float64")
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            zeros = paddle.zeros(shape=[10], dtype="int64")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(fetch_list=[zeros])
            expected_result = np.zeros(10, dtype="int64")
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            zeros = paddle.zeros(shape=[10], dtype="int64", device="cpu")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(fetch_list=[zeros])
            expected_result = np.zeros(10, dtype="int64")
        self.assertEqual((result == expected_result).all(), True)


class ApiOnesTest(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            ones = paddle.ones(shape=[10], dtype="float64")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(fetch_list=[ones])
            expected_result = np.ones(10, dtype="float64")
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            ones = paddle.ones(shape=[10], dtype="int64")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(fetch_list=[ones])
            expected_result = np.ones(10, dtype="int64")
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
            ones = paddle.ones(shape=[10], dtype="int64", device="cpu")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            result, = exe.run(fetch_list=[ones])
            expected_result = np.ones(10, dtype="int64")
        self.assertEqual((result == expected_result).all(), True)


class ApiOnesZerosError(unittest.TestCase):
    def test_errors(self):
        def test_error1():
            with fluid.program_guard(fluid.Program()):
                ones = paddle.ones(shape=10, dtype="int64", device="opu")

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program()):
                ones = paddle.ones(shape=10, dtype="int64", device="opu")

        self.assertRaises(ValueError, test_error2)


451 452
if __name__ == "__main__":
    unittest.main()