test_var_base.py 29.4 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
18 19
import numpy as np
import six
20
import copy
21

22
import paddle
L
Leo Chen 已提交
23 24 25 26 27 28 29 30 31 32
import paddle.fluid as fluid
import paddle.fluid.core as core


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

33 34 35
    def test_to_tensor(self):
        def _test_place(place):
            with fluid.dygraph.guard():
36
                paddle.set_default_dtype('float32')
37
                # set_default_dtype should not take effect on int
38 39 40 41
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1]))
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

42 43 44
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

45 46 47 48 49 50 51 52 53 54
                # set_default_dtype should not take effect on numpy
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2], 'float16')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

                # set_default_dtype take effect on float
55 56 57 58 59
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(
                    np.array_equal(x.numpy(), np.array([1.2]).astype(
                        'float32')))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
60 61 62 63 64 65 66 67 68
                clone_x = x.clone()
                self.assertTrue(
                    np.array_equal(clone_x.numpy(),
                                   np.array([1.2]).astype('float32')))
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
                self.assertTrue(
                    np.array_equal(x.grad, np.array([2.4]).astype('float32')))
69 70 71 72 73 74 75 76 77
                y = x.cpu()
                self.assertEqual(y.place.__repr__(), "CPUPlace")
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
                    self.assertEqual(y.place.__repr__(), "CUDAPinnedPlace")
                    y = x.cuda(blocking=False)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
                    y = x.cuda(blocking=True)
                    self.assertEqual(y.place.__repr__(), "CUDAPlace(0)")
78

79 80 81 82 83
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

84
                # set_default_dtype take effect on complex
85 86
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
87
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
88 89 90 91 92 93 94 95

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.2]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j]))
C
chentianyu03 已提交
96
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
97

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, [1])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False)
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), [1., 2.]))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.grad, None)
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False)
                self.assertTrue(np.array_equal(x.numpy(), self.array))
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
                self.assertTrue(np.array_equal(y.numpy(), self.array))
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
                self.assertTrue(np.array_equal(z.numpy(), 2 * self.array))

                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place)
                y = paddle.to_tensor(x)
                self.assertTrue(np.array_equal(x.numpy(), [1 + 2j, 1 - 2j]))
C
chentianyu03 已提交
142
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
143 144 145 146 147 148 149 150 151 152 153 154 155 156
                self.assertEqual(y.shape, [2])

                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

        _test_place(core.CPUPlace())
157
        _test_place("cpu")
158
        if core.is_compiled_with_cuda():
159
            _test_place(core.CUDAPinnedPlace())
160
            _test_place("gpu_pinned")
161
            _test_place(core.CUDAPlace(0))
162
            _test_place("gpu:0")
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
    def test_to_tensor_change_place(self):
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
            with paddle.fluid.dygraph.guard(core.CPUPlace()):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
                self.assertEqual(a.place.__repr__(), "CPUPlace")

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
                self.assertEqual(a.place.__repr__(), "CUDAPlace(0)")

            with paddle.fluid.dygraph.guard(core.CUDAPlace(0)):
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
                self.assertEqual(a.place.__repr__(), "CUDAPinnedPlace")

L
Leo Chen 已提交
182 183 184 185 186 187 188 189 190 191 192
    def test_to_variable(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array, name="abc")
            self.assertTrue(np.array_equal(var.numpy(), self.array))
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
193 194 195 196 197 198 199
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
                var = fluid.dygraph.to_variable("test", name="abc")
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
                linear = fluid.dygraph.Linear(32, 64)
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def test_list_to_variable(self):
        with fluid.dygraph.guard():
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
            var = fluid.dygraph.to_variable(array, dtype='int32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

    def test_tuple_to_variable(self):
        with fluid.dygraph.guard():
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
            var = fluid.dygraph.to_variable(array, dtype='float32')
            self.assertTrue(np.array_equal(var.numpy(), array))
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

219 220 221
    def test_tensor_to_variable(self):
        with fluid.dygraph.guard():
            t = fluid.Tensor()
L
Leo Chen 已提交
222
            t.set(np.random.random((1024, 1024)), fluid.CPUPlace())
223 224 225
            var = fluid.dygraph.to_variable(t)
            self.assertTrue(np.array_equal(t, var.numpy()))

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    def test_leaf_tensor(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

            x = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]), stop_gradient=False)
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
            input = paddle.to_tensor(
                np.random.uniform(
                    -1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False)
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

Z
Zhou Wei 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def test_detach(self):
        with fluid.dygraph.guard():
            x = paddle.to_tensor(1.0, dtype="float64", stop_gradient=False)
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

            detach_x[:] = 10.0
            self.assertTrue(np.array_equal(x.numpy(), [10.0]))

            y = x**2
            y.backward()
            self.assertTrue(np.array_equal(x.grad, [20.0]))
            self.assertEqual(detach_x.grad, None)

            detach_x.stop_gradient = False  # Set stop_gradient to be False, supported auto-grad
            z = 3 * detach_x**2
            z.backward()
            self.assertTrue(np.array_equal(x.grad, [20.0]))
            self.assertTrue(np.array_equal(detach_x.grad, [60.0]))
271

Z
Zhou Wei 已提交
272
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
273 274 275 276
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
277

L
Leo Chen 已提交
278 279 280 281
    def test_write_property(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)

282
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
283 284 285 286 287 288 289 290 291 292 293
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    def test_deep_copy(self):
        with fluid.dygraph.guard():
            empty_var = core.VarBase()
            empty_var_copy = copy.deepcopy(empty_var)
            self.assertEqual(empty_var.stop_gradient,
                             empty_var_copy.stop_gradient)
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

            x = paddle.to_tensor([2.], stop_gradient=False)
            y = paddle.to_tensor([3.], stop_gradient=False)
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
            self.assertTrue(np.array_equal(x.numpy(), x_copy.numpy()))
            self.assertTrue(np.array_equal(y.numpy(), y_copy.numpy()))

            self.assertNotEqual(id(x), id(x_copy))
            x_copy[:] = 5.
            self.assertTrue(np.array_equal(x_copy.numpy(), [5.]))
            self.assertTrue(np.array_equal(x.numpy(), [2.]))

            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
            x = core.VarBase(core.VarDesc.VarType.FP32, [3, 100],
                             "selected_rows",
                             core.VarDesc.VarType.SELECTED_ROWS, True)
            selected_rows = x.value().get_selected_rows()
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace())
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
            self.assertEqual(copy_selected_rows.height(),
                             selected_rows.height())
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
            self.assertTrue(
                np.array_equal(
                    np.array(copy_selected_rows.get_tensor()),
                    np.array(selected_rows.get_tensor())))

L
Leo Chen 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369
    # test some patched methods
    def test_set_value(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
            self.assertTrue(np.array_equal(var.numpy(), tmp2))

    def test_to_string(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
370
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395

    def test_backward(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

    def test_gradient(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            var.stop_gradient = False
            loss = fluid.layers.relu(var)
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

    def test_block(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertEqual(var.block,
                             fluid.default_main_program().global_block())

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def _test_slice(self):
        w = fluid.dygraph.to_variable(
            np.random.random((784, 100, 100)).astype('float64'))

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

        self.assertEqual(len(nw.shape), 1)
        self.assertEqual(nw.shape[0], 1)

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

        tensor_array = np.array(
            [[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
             [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
             [[19, 20, 21], [22, 23, 24], [25, 26, 27]]]).astype('float32')
        var = fluid.dygraph.to_variable(tensor_array)
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
        var_reshape = fluid.layers.reshape(var, [3, -1, 3])
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
442
        var16 = var[-4:4]
443 444 445

        vars = [
            var, var1, var2, var3, var4, var5, var6, var7, var8, var9, var10,
446
            var11, var12, var13, var14, var15, var16
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
        ]
        local_out = [var.numpy() for var in vars]

        self.assertTrue(np.array_equal(local_out[1], tensor_array[0, 1, 1:2]))
        self.assertTrue(np.array_equal(local_out[2], tensor_array[1:]))
        self.assertTrue(np.array_equal(local_out[3], tensor_array[0:1]))
        self.assertTrue(np.array_equal(local_out[4], tensor_array[::-1]))
        self.assertTrue(np.array_equal(local_out[5], tensor_array[1, 1:, 1:]))
        self.assertTrue(
            np.array_equal(local_out[6],
                           tensor_array.reshape((3, -1, 3))[:, :, -1]))
        self.assertTrue(np.array_equal(local_out[7], tensor_array[:, :, :-1]))
        self.assertTrue(np.array_equal(local_out[8], tensor_array[:1, :1, :1]))
        self.assertTrue(
            np.array_equal(local_out[9], tensor_array[:-1, :-1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[10], tensor_array[::-1, :1, :-1]))
        self.assertTrue(
            np.array_equal(local_out[11], tensor_array[:-1, ::-1, -1:]))
        self.assertTrue(
            np.array_equal(local_out[12], tensor_array[1:2, 2:, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[13], tensor_array[2:10, 2:, -2:-1]))
        self.assertTrue(
            np.array_equal(local_out[14], tensor_array[1:-1, 0:2, ::-1]))
        self.assertTrue(
            np.array_equal(local_out[15], tensor_array[::-1, ::-1, ::-1]))
474
        self.assertTrue(np.array_equal(local_out[16], tensor_array[-4:4]))
475

H
hong 已提交
476 477 478 479 480 481 482
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
        w = fluid.dygraph.to_variable(np_value)

        for i, e in enumerate(w):
            self.assertTrue(np.array_equal(e.numpy(), np_value[i]))

L
Leo Chen 已提交
483 484
    def test_slice(self):
        with fluid.dygraph.guard():
485
            self._test_slice()
H
hong 已提交
486
            self._test_for_var()
487

L
Leo Chen 已提交
488 489
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var[1, :].numpy(), self.array[1, :]))
490
            self.assertTrue(np.array_equal(var[::-1].numpy(), self.array[::-1]))
L
Leo Chen 已提交
491

H
hong 已提交
492 493 494
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

495 496 497
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

L
Leo Chen 已提交
498 499 500 501 502 503 504
    def test_var_base_to_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(
                np.array_equal(var.numpy(),
                               fluid.framework._var_base_to_np(var)))

505 506 507 508 509 510 511 512 513
    def test_var_base_as_np(self):
        with fluid.dygraph.guard():
            var = fluid.dygraph.to_variable(self.array)
            self.assertTrue(np.array_equal(var.numpy(), np.array(var)))
            self.assertTrue(
                np.array_equal(
                    var.numpy(), np.array(
                        var, dtype=np.float32)))

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
    def test_if(self):
        with fluid.dygraph.guard():
            var1 = fluid.dygraph.to_variable(np.array([[[0]]]))
            var2 = fluid.dygraph.to_variable(np.array([[[1]]]))

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

            assert var1_bool == False, "if var1 should be false"
            assert var2_bool == True, "if var2 should be true"
            assert bool(var1) == False, "bool(var1) is False"
            assert bool(var2) == True, "bool(var2) is True"

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
    def test_to_static_var(self):
        with fluid.dygraph.guard():
            # Convert VarBase into Variable or Parameter
            var_base = fluid.dygraph.to_variable(self.array, name="var_base_1")
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

            var_base = fluid.dygraph.to_variable(self.array, name="var_base_2")
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

            # Convert ParamBase into Parameter
            fc = fluid.dygraph.Linear(
                10,
                20,
                param_attr=fluid.ParamAttr(
                    learning_rate=0.001,
                    do_model_average=True,
                    regularizer=fluid.regularizer.L1Decay()))
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
            self.assertTrue(isinstance(static_var, fluid.framework.Parameter))
            self.assertTrue(static_var.persistable, True)
            if isinstance(var_base, fluid.framework.ParamBase):
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr))

                self.assertEqual(static_var.optimize_attr['learning_rate'],
                                 0.001)
                self.assertTrue(
                    isinstance(static_var.regularizer,
                               fluid.regularizer.L1Decay))
        else:
            self.assertTrue(isinstance(static_var, fluid.framework.Variable))

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

579
    def test_tensor_str(self):
Z
Zhou Wei 已提交
580
        paddle.enable_static()
581
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
582
        paddle.seed(10)
583 584 585 586
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

587
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=CPUPlace, stop_gradient=True,
588 589 590 591 592 593 594 595 596 597 598
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

599 600 601 602 603
    def test_tensor_str2(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

604
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
605 606 607 608 609 610 611 612 613 614 615
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

    def test_tensor_str3(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

616
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=True,
617 618 619 620 621 622
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

623 624 625 626 627 628 629 630 631 632 633
    def test_tensor_str_scaler(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

        expected = '''Tensor(shape=[], dtype=bool, place=CPUPlace, stop_gradient=True,
       False)'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

634 635 636 637 638 639 640 641 642 643 644 645
    def test_tensor_str_shape_with_zero(self):
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
        y = paddle.fluid.layers.where(x == 0)
        a_str = str(y)

        expected = '''Tensor(shape=[0, 2], dtype=int64, place=CPUPlace, stop_gradient=True,
       [])'''

        self.assertEqual(a_str, expected)
        paddle.enable_static()

L
Leo Chen 已提交
646 647 648 649 650 651 652 653 654 655
    def test_print_tensor_dtype(self):
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
        paddle.enable_static()

L
Leo Chen 已提交
656

657 658 659
class TestVarBaseSetitem(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
660 661 662
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
663 664
        self.tensor_value = paddle.to_tensor(self.np_value)

665 666 667
    def set_dtype(self):
        self.dtype = "int32"

668 669
    def _test(self, value):
        paddle.disable_static()
670
        self.assertEqual(self.tensor_x.inplace_version, 0)
671

672
        id_origin = id(self.tensor_x)
673
        self.tensor_x[0] = value
674
        self.assertEqual(self.tensor_x.inplace_version, 1)
675 676

        if isinstance(value, (six.integer_types, float)):
677
            result = np.zeros((2, 3)).astype(self.dtype) + value
678 679 680 681 682 683 684 685

        else:
            result = self.np_value

        self.assertTrue(np.array_equal(self.tensor_x[0].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
686
        self.assertEqual(self.tensor_x.inplace_version, 2)
687 688 689 690
        self.assertTrue(np.array_equal(self.tensor_x[1].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
691
        self.assertEqual(self.tensor_x.inplace_version, 3)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
        self.assertTrue(np.array_equal(self.tensor_x[3].numpy(), result))
        self.assertEqual(id_origin, id(self.tensor_x))

    def test_value_tensor(self):
        paddle.disable_static()
        self._test(self.tensor_value)

    def test_value_numpy(self):
        paddle.disable_static()
        self._test(self.np_value)

    def test_value_int(self):
        paddle.disable_static()
        self._test(10)

707 708 709 710 711 712 713 714 715 716

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

717 718 719 720 721
    def test_value_float(self):
        paddle.disable_static()
        self._test(3.3)


722 723 724 725 726
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
class TestVarBaseInplaceVersion(unittest.TestCase):
    def test_setitem(self):
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

    def test_bump_inplace_version(self):
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


L
Leo Chen 已提交
752 753
if __name__ == '__main__':
    unittest.main()