test_sparse_matmul_op.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np
import scipy
import scipy.sparse as sp
import unittest
import os
import re

23
paddle.set_default_dtype('float64')
24 25 26 27 28 29 30 31 32 33 34 35 36 37


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class TestMatmul(unittest.TestCase):
    # x: sparse, y: dense, out: dense
    def check_result(self, x_shape, y_shape, format):
        if len(x_shape) == 3:
            mask = paddle.randint(0, 2, [x_shape[-2], x_shape[-1]])
        else:
            mask = paddle.randint(0, 2, x_shape)
        origin_x = paddle.rand(x_shape) * mask
        origin_y = paddle.rand(y_shape)

        dense_x = origin_x.detach()
        dense_x.stop_gradient = False
        dense_y = origin_y.detach()
        dense_y.stop_gradient = False
        dense_out = paddle.matmul(dense_x, dense_y)

        if format == "coo":
            sp_x = origin_x.detach().to_sparse_coo(len(x_shape))
        else:
57
            sp_x = origin_x.detach().to_sparse_csr()
58 59 60 61
        sp_x.stop_gradient = False
        sp_y = origin_y.detach()
        sp_y.stop_gradient = False
        sp_out = paddle.incubate.sparse.matmul(sp_x, sp_y)
62

63 64 65 66
        self.assertTrue(np.allclose(sp_out.numpy(), dense_out.numpy()))
        if get_cuda_version() >= 11030:
            dense_out.backward()
            sp_out.backward()
67 68 69 70 71 72
            self.assertTrue(
                np.allclose(sp_x.grad.to_dense().numpy(),
                            (dense_x.grad * mask).numpy()))
            self.assertTrue(np.allclose(sp_y.grad.numpy(),
                                        dense_y.grad.numpy()))

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    @unittest.skipIf(not paddle.is_compiled_with_cuda()
                     or get_cuda_version() < 11000, "only support cuda>=11.0")
    def test_matmul_2d(self):
        self.check_result([16, 12], [12, 10], 'coo')
        self.check_result([16, 12], [12, 10], 'csr')

    @unittest.skipIf(not paddle.is_compiled_with_cuda()
                     or get_cuda_version() < 11070, "only support cuda>=11.7")
    def test_matmul_3d(self):
        self.check_result([8, 16, 12], [8, 12, 10], 'coo')
        self.check_result([8, 16, 12], [8, 12, 10], 'csr')


class TestMaskedMatmul(unittest.TestCase):
    # x: dense, y: dense, out: sparse_`csr
    @unittest.skipIf(not paddle.is_compiled_with_cuda()
                     or get_cuda_version() < 11030,
                     "only support on cuda>=11.3")
    def test_masked_matmul_2d(self):
        np_mask = np.random.rand(10, 6) < 0.2

        np_x = np.random.rand(10, 12)
        np_y = np.random.rand(12, 6)
        np_out = sp.csr_matrix(np.matmul(np_x, np_y) * np_mask)

        np_out_grad = sp.csr_matrix(np.ones([10, 6]) * np_mask)
        # dx(dense) = dout(csr) * y'(dense)
        np_x_grad = np_out_grad @ np_y.transpose(1, 0)
        # dy(dense) = x'(dense) * dout(csr) -> dy'(dense) = dout'(csr) * x(dense)
        np_y_grad = (np_out_grad.transpose() @ np_x).transpose(1, 0)

        x = paddle.to_tensor(np_x, stop_gradient=False)
        y = paddle.to_tensor(np_y, stop_gradient=False)
        mask = paddle.to_tensor(np.ones([10, 6]) * np_mask).to_sparse_csr()
        out = paddle.incubate.sparse.masked_matmul(x, y, mask)

        self.assertTrue(np.allclose(np_out.indptr, out.crows().numpy()))
        self.assertTrue(np.allclose(np_out.indices, out.cols().numpy()))
        self.assertTrue(np.allclose(np_out.data, out.values().numpy()))

        out.backward()
        self.assertTrue(np.allclose(out.is_sparse_csr(), True))
        self.assertTrue(np.allclose(np_x_grad, x.grad.numpy()))
        self.assertTrue(np.allclose(np_y_grad, y.grad.numpy()))

    @unittest.skipIf(not paddle.is_compiled_with_cuda()
                     or get_cuda_version() < 11070,
                     "only support on cuda>=11.7")
    def test_masked_matmul_3d(self):
        paddle.set_default_dtype('float32')
        origin_x = paddle.rand([16, 16, 12])
        mask = paddle.randint(0, 2, [16, 12])
        origin_x = origin_x * mask
        origin_y = paddle.rand([16, 12, 10])

        dense_x = origin_x.detach()
        dense_x.stop_gradient = False
        dense_y = origin_y.detach()
        dense_y.stop_gradient = False
        dense_out = paddle.matmul(dense_x, dense_y)
        dense_out.backward()

        sp_x = origin_x.detach().to_sparse_csr()
        sp_x.stop_gradient = False
        sp_y = origin_y.detach()
        sp_y.stop_gradient = False
        sp_out = paddle.incubate.sparse.matmul(sp_x, sp_y)
        sp_out.backward()

        self.assertTrue(np.allclose(sp_out.numpy(), dense_out.numpy()))
        self.assertTrue(
            np.allclose(sp_x.grad.to_dense().numpy(),
                        (dense_x.grad * mask).numpy()))
        self.assertTrue(np.allclose(sp_y.grad.numpy(), dense_y.grad.numpy()))
147

148 149 150

if __name__ == "__main__":
    unittest.main()