test_regularizer.py 12.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
C
chengduo 已提交
18 19 20
from functools import partial
import contextlib
import numpy as np
L
littletomatodonkey 已提交
21
import random
C
chengduo 已提交
22 23 24
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
25 26 27 28
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer
from paddle.fluid.backward import append_backward
29 30 31


class TestL2DecayRegularizer(unittest.TestCase):
32

33
    def test_l2decay_regularizer(self):
L
littletomatodonkey 已提交
34
        paddle.enable_static()
35 36 37 38 39 40 41 42 43 44 45
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L2DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L2DecayRegularizer))
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
F
fengjiayi 已提交
68
        params_grads = append_backward(mean_out)
69 70
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
71
        optimizer = paddle.optimizer.Adam()
72 73 74
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 2)
C
chengduo 已提交
75
        self.assertEqual(block.ops[-1].type, 'sum')
76 77 78
        self.assertEqual(block.ops[-2].type, 'scale')


79
class TestL1DecayRegularizer(unittest.TestCase):
80

81
    def test_l2decay_regularizer(self):
L
littletomatodonkey 已提交
82
        paddle.enable_static()
83 84 85 86 87 88 89 90 91 92 93
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            regularizer=regularizer.L1DecayRegularizer(0.5))
        self.assertTrue(mul_x.regularizer is not None)
        self.assertTrue(
            isinstance(mul_x.regularizer, regularizer.L1DecayRegularizer))
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        mul_y = block.create_var(dtype="float32",
                                 shape=[10, 8],
                                 lod_level=0,
                                 name="mul.y")
        mul_out = block.create_var(dtype="float32",
                                   shape=[5, 8],
                                   lod_level=0,
                                   name="mul.out")
        block.append_op(type="mul",
                        inputs={
                            "X": mul_x,
                            "Y": mul_y
                        },
                        outputs={"Out": mul_out},
                        attrs={"x_num_col_dims": 1})
        mean_out = block.create_var(dtype="float32",
                                    shape=[1],
                                    lod_level=0,
                                    name="mean.out")
        block.append_op(type="mean",
                        inputs={"X": mul_out},
                        outputs={"Out": mean_out})
F
fengjiayi 已提交
116
        params_grads = append_backward(mean_out)
117 118
        self.assertEqual(len(params_grads), 1)
        count_ops = len(block.ops)
119
        optimizer = paddle.optimizer.Adam()
120 121 122
        params_grads = optimizer.append_regularization_ops(params_grads)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(block.ops), count_ops + 3)
C
chengduo 已提交
123
        self.assertEqual(block.ops[-1].type, 'sum')
124 125 126 127
        self.assertEqual(block.ops[-2].type, 'scale')
        self.assertEqual(block.ops[-3].type, 'sign')


C
chengduo 已提交
128 129 130 131
def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
132 133 134
            emb_dim=8,
            hid_dim=8,
            hid_dim2=6,
C
chengduo 已提交
135 136 137 138 139 140
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
141 142 143
    emb = fluid.layers.embedding(input=data,
                                 is_sparse=is_sparse,
                                 size=[dict_dim, emb_dim])
C
chengduo 已提交
144 145 146 147 148 149
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
150
    avg_cost = paddle.mean(x=cost)
C
chengduo 已提交
151 152 153 154
    return avg_cost


class TestRegularizer(unittest.TestCase):
155

C
chengduo 已提交
156
    def setUp(self):
L
littletomatodonkey 已提交
157 158 159
        self.word_len = 1500
        self.train_data = [[(random.sample(range(1000), 10), [0])]
                           for _ in range(2)]
C
chengduo 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

    def get_places(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        return places

    @contextlib.contextmanager
    def scope_prog_guard(self, main_prog, startup_prog):
        scope = fluid.core.Scope()
        with fluid.unique_name.guard():
            with fluid.scope_guard(scope):
                with fluid.program_guard(main_prog, startup_prog):
                    yield

    def run_program(self, place, feed_list):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        main_prog = fluid.default_main_program()
        param_list = [var.name for var in main_prog.block(0).all_parameters()]

        param_sum = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=param_list)
            p_sum = 0
            for v in out:
                p_sum += np.sum(np.abs(v))
            param_sum.append(p_sum)
        return param_sum

    def check_l2decay_regularizer(self, place, model):
C
cnn 已提交
195
        paddle.seed(1)
L
Leo Chen 已提交
196
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
197 198
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
199 200 201 202 203 204
        with self.scope_prog_guard(main_prog=main_prog,
                                   startup_prog=startup_prog):
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
205 206
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
207
            avg_cost = model(data, label, self.word_len)
C
chengduo 已提交
208 209 210 211 212 213 214 215 216

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=0.1,
                regularization=fluid.regularizer.L2Decay(1.0))
            optimizer.minimize(avg_cost)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def check_l2decay(self, place, model):
C
cnn 已提交
217
        paddle.seed(1)
L
Leo Chen 已提交
218
        paddle.framework.random._manual_program_seed(1)
C
chengduo 已提交
219 220
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
L
Leo Chen 已提交
221

222 223 224 225 226 227
        with self.scope_prog_guard(main_prog=main_prog,
                                   startup_prog=startup_prog):
            data = fluid.layers.data(name="words",
                                     shape=[1],
                                     dtype="int64",
                                     lod_level=1)
C
chengduo 已提交
228 229
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

L
littletomatodonkey 已提交
230
            avg_cost_l2 = model(data, label, self.word_len)
C
chengduo 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

            param_list = fluid.default_main_program().block(0).all_parameters()
            para_sum = []
            for para in param_list:
                para_mul = fluid.layers.square(x=para)
                para_sum.append(fluid.layers.reduce_sum(input=para_mul))
            avg_cost_l2 += fluid.layers.sums(para_sum) * .5

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.1)
            optimizer.minimize(avg_cost_l2)
            param_sum = self.run_program(place, [data, label])
        return param_sum

    def test_l2(self):
        for place in self.get_places():
            dense_sparse_p_sum = []
            for sparse in [True, False]:
                model = partial(bow_net, is_sparse=sparse)
                framework_l2 = self.check_l2decay_regularizer(place, model)
                l2 = self.check_l2decay(place, model)
                assert len(l2) == len(framework_l2)
                for i in range(len(l2)):
                    assert np.isclose(a=framework_l2[i], b=l2[i], rtol=5e-5)
                dense_sparse_p_sum.append(framework_l2)

            assert len(dense_sparse_p_sum[0]) == len(dense_sparse_p_sum[1])
            for i in range(len(dense_sparse_p_sum[0])):
258 259 260
                assert np.isclose(a=dense_sparse_p_sum[0][i],
                                  b=dense_sparse_p_sum[1][i],
                                  rtol=5e-5)
C
chengduo 已提交
261

262
    def test_repeated_regularization(self):
263 264 265 266 267 268 269 270 271
        l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
        l2 = fluid.regularizer.L2Decay(regularization_coeff=0.01)
        fc_param_attr = fluid.ParamAttr(regularizer=l1)
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.layers.uniform_random([2, 2, 3])
            out = fluid.layers.fc(x, 5, param_attr=fc_param_attr)
            loss = fluid.layers.reduce_sum(out)
            sgd = fluid.optimizer.SGD(learning_rate=0.1, regularization=l2)
            sgd.minimize(loss)
272 273
        with fluid.dygraph.guard():
            input = fluid.dygraph.to_variable(
274
                np.random.randn(3, 2).astype('float32'))
C
cnn 已提交
275
            paddle.seed(1)
L
Leo Chen 已提交
276
            paddle.framework.random._manual_program_seed(1)
277

278 279 280 281 282 283 284 285
            linear1 = fluid.dygraph.Linear(2,
                                           2,
                                           param_attr=fc_param_attr,
                                           bias_attr=fc_param_attr)
            linear2 = fluid.dygraph.Linear(2,
                                           2,
                                           param_attr=fc_param_attr,
                                           bias_attr=fc_param_attr)
286 287 288 289

            loss1 = linear1(input)
            loss1.backward()
            # set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
290

291 292 293 294 295 296 297 298 299 300 301 302 303
            fluid.optimizer.SGD(parameter_list=linear1.parameters(),
                                learning_rate=1e-2,
                                regularization=l2).minimize(loss1)
            # only set l1 in fluid.ParamAttr
            loss2 = linear2(input)
            loss2.backward()
            fluid.optimizer.SGD(parameter_list=linear2.parameters(),
                                learning_rate=1e-2).minimize(loss2)
            # they should both be applied by l1, and keep the same
            self.assertTrue(
                np.allclose(linear1.weight.numpy(), linear2.weight.numpy()),
                "weight should use the regularization in fluid.ParamAttr!")
            self.assertTrue(
304
                np.allclose(linear1.bias.numpy(), linear2.bias.numpy()),
305 306
                "bias should use the regularization in fluid.ParamAttr!")

C
chengduo 已提交
307

308 309
if __name__ == '__main__':
    unittest.main()