fc_op.cc 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
14 15 16
namespace paddle {
namespace framework {
class Scope;
17

W
wanghuancoder 已提交
18 19 20 21 22 23
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

24 25 26
namespace paddle {
namespace inference {
namespace tensorrt {
27 28 29 30 31 32 33 34 35 36
namespace {
template <typename T>
void tranpose_weight(const T* src, T* dst, int m, int n) {
  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++) {
      dst[j * m + i] = src[i * n + j];
    }
  }
}
}  // namespace
37 38 39 40 41 42

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
43
  nvinfer1::ILayer* reshape_before_fc(nvinfer1::ITensor* before_fc,
44 45
                                      nvinfer1::Dims x_dim,
                                      int x_num_col_dims,
W
Wangzheee 已提交
46
                                      std::string output_name) {
47 48 49 50
    // add shuffle before fc
    nvinfer1::Dims reshape_before_fc_dim;
    reshape_before_fc_dim.nbDims = x_num_col_dims + 3;
    // padding shape "* x q x 1 x 1"
51 52 53 54 55 56 57 58 59 60 61 62

    nvinfer1::ITensor* filal_reshape_before_fc_shape_tensor = nullptr;

    if (!engine_->with_dynamic_shape()) {
      for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
        reshape_before_fc_dim.d[i] = 1;
      }
      for (int i = 0; i < x_dim.nbDims; i++) {
        if (i < x_num_col_dims) {
          reshape_before_fc_dim.d[i] = 0;
        } else {
          reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i];
63 64
        }
      }
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    } else {
      std::vector<nvinfer1::ITensor*> reshape_before_fc_shape_tensor;
      nvinfer1::ITensor* input_shape_tensor = Shape(before_fc);

      for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
        reshape_before_fc_shape_tensor.push_back(Add1DConstantLayer(1));
      }
      for (int i = 0; i < x_dim.nbDims; i++) {
        if (i < x_num_col_dims) {
          reshape_before_fc_shape_tensor[i] =
              GetEleTensorOfShape(input_shape_tensor, i);
        } else {
          reshape_before_fc_shape_tensor[x_num_col_dims] =
              Prod(GetEleTensorOfShape(input_shape_tensor, i),
                   reshape_before_fc_shape_tensor[x_num_col_dims]);
        }
      }
      filal_reshape_before_fc_shape_tensor =
          Concat(reshape_before_fc_shape_tensor);
84
    }
85

86 87
    auto* reshape_before_fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *before_fc);
88 89 90 91 92 93 94
    if (!engine_->with_dynamic_shape()) {
      reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
    } else {
      reshape_before_fc_layer->setInput(1,
                                        *filal_reshape_before_fc_shape_tensor);
    }

W
Wangzheee 已提交
95 96 97
    reshape_before_fc_layer->setName(
        ("fc_op_reshape_before_fc: Shuffle (Output: " + output_name + ")")
            .c_str());
98 99 100 101
    return reshape_before_fc_layer;
  }

  nvinfer1::ILayer* reshape_after_fc(nvinfer1::ITensor* after_fc,
102 103
                                     nvinfer1::Dims x_dim,
                                     int x_num_col_dims) {
104 105
    // add shuffle after fc
    nvinfer1::Dims reshape_after_fc_dim;
106
    reshape_after_fc_dim.nbDims = x_num_col_dims + 1;
107 108 109 110 111 112 113 114 115 116 117 118

    nvinfer1::ITensor* filal_reshape_after_fc_shape_tensor = nullptr;

    if (!engine_->with_dynamic_shape()) {
      for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) {
        reshape_after_fc_dim.d[i] = 0;
      }
    } else {
      std::vector<int> gather_indices(x_num_col_dims + 1);
      std::iota(gather_indices.begin(), gather_indices.end(), 0);
      filal_reshape_after_fc_shape_tensor =
          Gather(Shape(after_fc), gather_indices);
119
    }
120

121 122
    auto* reshape_after_fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *after_fc);
123 124 125 126 127 128
    if (!engine_->with_dynamic_shape()) {
      reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);
    } else {
      reshape_after_fc_layer->setInput(1, *filal_reshape_after_fc_shape_tensor);
    }

129 130 131
    return reshape_after_fc_layer;
  }

132
  void operator()(const framework::proto::OpDesc& op,
133 134
                  const framework::Scope& scope,
                  bool test_mode) override {
135
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
136
    framework::OpDesc op_desc(op, nullptr);
137
    auto output_name = op_desc.Output("Out").front();
138 139 140 141 142 143 144 145
    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
146
    // Declare inputs
147
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
W
Wangzheee 已提交
148
    auto x_dim = X->getDimensions();
149
    // Declare weights
150
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
151
    PADDLE_ENFORCE_NOT_NULL(
152 153 154
        Y_v,
        platform::errors::NotFound(
            "Can not find %s presistale var of fc in scope.", w_name));
155
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
156
    int x_num_col_dims =
P
Pei Yang 已提交
157
        op_desc.HasAttr("x_num_col_dims")
R
Ruibiao Chen 已提交
158
            ? PADDLE_GET_CONST(int, op_desc.GetAttr("x_num_col_dims"))
P
Pei Yang 已提交
159
            : (op_desc.HasAttr("in_num_col_dims")
R
Ruibiao Chen 已提交
160
                   ? PADDLE_GET_CONST(int, op_desc.GetAttr("in_num_col_dims"))
P
Pei Yang 已提交
161 162 163
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
R
Ruibiao Chen 已提交
164
            ? PADDLE_GET_CONST(std::string, op_desc.GetAttr("activation_type"))
P
Pei Yang 已提交
165
            : "";
166

167
    bool enable_int8 = op_desc.HasAttr("enable_int8");
168 169
    bool support_int8 = false;
    if (op_desc.HasAttr("support_int8")) {
R
Ruibiao Chen 已提交
170
      support_int8 = PADDLE_GET_CONST(bool, op_desc.GetAttr("support_int8"));
171 172 173 174
    }
    float in_scale = 0;
    if (enable_int8 || support_int8) {
      if (enable_int8) {
R
Ruibiao Chen 已提交
175
        in_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("Input_scale"));
176
      } else {
R
Ruibiao Chen 已提交
177
        in_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("X"));
178
      }
179 180
      engine_->SetTensorDynamicRange(X, in_scale);
    }
N
nhzlx 已提交
181

182 183
    PADDLE_ENFORCE_EQ(Y_t->dims().size(),
                      2UL,
184 185 186 187
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
188 189 190
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];

191 192
    auto regist_fc = [&](nvinfer1::ITensor* inputs,
                         int n_output,
193 194
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
195
      if (enable_int8 || support_int8) {
196
        // add conv layer
197 198 199
        float out_scale = 0;
        if (enable_int8) {
          PADDLE_ENFORCE_EQ(
200 201
              op_desc.HasAttr("out_threshold"),
              true,
202 203
              platform::errors::InvalidArgument(
                  "must have out threshold in fc layers in int8 mode"));
R
Ruibiao Chen 已提交
204
          out_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
205
        } else {
R
Ruibiao Chen 已提交
206
          out_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("Out"));
207
        }
208
        nvinfer1::DimsHW nv_ksize(1, 1);
209 210 211 212 213 214 215
        auto* fc_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_,
                                                   Convolution,
                                                   *inputs,
                                                   n_output,
                                                   nv_ksize,
                                                   weight.get(),
                                                   bias.get());
W
Wangzheee 已提交
216 217 218
        fc_layer_int8->setName(
            ("fc_op_int8_conv1x1: Convolution (Output: " + output_name + ")")
                .c_str());
219
        engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale);
220 221
        auto* fc_after_reshape_int8 = reshape_after_fc(
            fc_layer_int8->getOutput(0), x_dim, x_num_col_dims);
222
        if (activation_type == "relu") {
W
Wangzheee 已提交
223
          fc_after_reshape_int8->setName(
224
              ("int8_reshape_after_fc: Shuffle (Output: " + output_name + ")")
W
Wangzheee 已提交
225
                  .c_str());
226 227
          engine_->SetTensorDynamicRange(fc_after_reshape_int8->getOutput(0),
                                         out_scale);
228 229 230 231 232 233 234 235 236
          nvinfer1::IActivationLayer* relu_layer_int8 =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_after_reshape_int8->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8,
                                   "relu_after_fc_shuffle",
                                   {output_name},
                                   test_mode);
237
        } else {
W
Wangzheee 已提交
238 239
          RreplenishLayerAndOutput(fc_after_reshape_int8,
                                   "fc_op_int8_reshape_after_fc: Shuffle",
240 241
                                   {output_name},
                                   test_mode);
242
        }
243
      } else {
244
        // add fc layer
245 246 247 248 249 250
        auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(engine_,
                                                    FullyConnected,
                                                    *inputs,
                                                    n_output,
                                                    weight.get(),
                                                    bias.get());
W
Wangzheee 已提交
251 252 253
        fc_layer_float->setName(
            ("fc_op_float: FullyConnected (Output: " + output_name + ")")
                .c_str());
254 255
        auto* fc_after_reshape_float = reshape_after_fc(
            fc_layer_float->getOutput(0), x_dim, x_num_col_dims);
256
        if (activation_type == "relu") {
W
Wangzheee 已提交
257
          fc_after_reshape_float->setName(
258
              ("float_reshape_after_fc: Shuffle (Output: " + output_name + ")")
W
Wangzheee 已提交
259
                  .c_str());
260 261 262 263 264 265 266 267 268
          nvinfer1::IActivationLayer* relu_layer_float =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_after_reshape_float->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_float,
                                   "relu_after_fc_shuffle",
                                   {output_name},
                                   test_mode);
269
        } else {
270 271 272 273
          RreplenishLayerAndOutput(fc_after_reshape_float,
                                   "shuffle_after_fc",
                                   {output_name},
                                   test_mode);
274
        }
275 276 277
      }
    };

278 279
    bool transpose_y = false;
    if (op_desc.HasAttr("transpose_Y")) {
R
Ruibiao Chen 已提交
280
      transpose_y = PADDLE_GET_CONST(bool, op_desc.GetAttr("transpose_Y"));
281 282
    }
    int weight_w, weight_h;
283 284
    auto weight = engine_->GetTrtWeight(op_desc.Input(w_name).front(), *Y_t);

285
    if (!transpose_y) {
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
      if (weight.get().type == nvinfer1::DataType::kFLOAT) {
        std::vector<float> weight_data_tmp;
        weight_data_tmp.reserve(Y_t->numel());
        memcpy(weight_data_tmp.data(),
               weight.get().values,
               Y_t->numel() * sizeof(float));
        tranpose_weight(
            weight_data_tmp.data(),
            const_cast<float*>(static_cast<const float*>(weight.get().values)),
            m,
            n);
      } else if (weight.get().type == nvinfer1::DataType::kHALF) {
        std::vector<float16> weight_data_tmp;
        weight_data_tmp.reserve(Y_t->numel());
        memcpy(weight_data_tmp.data(),
               weight.get().values,
               Y_t->numel() * sizeof(float16));
        tranpose_weight(weight_data_tmp.data(),
                        const_cast<float16*>(
                            static_cast<const float16*>(weight.get().values)),
                        m,
                        n);
      } else {
        PADDLE_THROW(paddle::platform::errors::InvalidArgument(
            "Paddle-TRT fc convert not supporte dtype, now only support fp32 "
            "and fp16."));
      }
313 314 315 316 317 318 319 320 321
      weight_w = n;
      weight_h = m;
    } else {
      weight_w = m;
      weight_h = n;
    }
    size_t n_output = weight_w;
    weight.dims.assign({weight_w, weight_h});

322
    TensorRTEngine::Weight bias{weight.get().type, nullptr, 0};
323
    if (with_bias) {
324
      auto* b_v = scope.GetVar(op_desc.Input("Bias").front());
325
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
326
      bias = engine_->GetTrtWeight(op_desc.Input("Bias").front(), *b_t);
327
    }
328

329 330 331
    // Running the TRT Static Shape mode: x_num_col_dims-1
    if (!engine_->with_dynamic_shape()) {
      x_num_col_dims--;
332
    }
Z
zhoutianzi666 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    // If use tensorrt'oss, the x_dim and x_num_col_dims need change, and can
    // not add Shuffle layer in ernie's multihead.
    if (x_dim.nbDims == 4 && x_num_col_dims == 1) {
      if (enable_int8 || support_int8) {
        // add conv1x1 layer
        nvinfer1::DimsHW nv_ksize(1, 1);
        auto* fc_layer_int8 = TRT_ENGINE_ADD_LAYER(engine_,
                                                   Convolution,
                                                   *X,
                                                   n_output,
                                                   nv_ksize,
                                                   weight.get(),
                                                   bias.get());
        if (activation_type == "relu") {
          fc_layer_int8->setName(
              ("ernie_fc_op_int8: Convolution (Output: " + output_name + ")")
                  .c_str());
          PADDLE_ENFORCE_EQ(
              op_desc.HasAttr("out_threshold"),
              true,
              platform::errors::InvalidArgument(
                  "must have out threshold in fc layers in int8 mode"));
          float out_scale = 0;
          if (enable_int8) {
            out_scale =
                PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
          } else {
            out_scale = PADDLE_GET_CONST(float, op_desc.GetAttr("Out"));
          }
          engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0),
                                         out_scale);
          nvinfer1::IActivationLayer* relu_layer_int8 =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_layer_int8->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8,
                                   "relu_after_ernie_fc_int8",
                                   {output_name},
                                   test_mode);
        } else {
          RreplenishLayerAndOutput(fc_layer_int8,
                                   "ernie_fc_op_int8: Convolution",
                                   {output_name},
                                   test_mode);
        }
      } else {
        // add fc layer
        auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *X, n_output, weight.get(), bias.get());
        if (activation_type == "relu") {
          fc_layer_float->setName(
              ("ernie_fc_op_float: (Output: " + output_name + ")").c_str());
          nvinfer1::IActivationLayer* relu_layer_float =
              TRT_ENGINE_ADD_LAYER(engine_,
                                   Activation,
                                   *(fc_layer_float->getOutput(0)),
                                   nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_float,
                                   "relu_after_ernie_fc_float",
                                   {output_name},
                                   test_mode);
        } else {
          RreplenishLayerAndOutput(
              fc_layer_float, "ernie_fc_op_float", {output_name}, test_mode);
        }
      }
    } else {  // need reshape input before and after fc
      PADDLE_ENFORCE_GT(
          x_dim.nbDims,
          x_num_col_dims,
          platform::errors::InvalidArgument(
              "Params and input dims mismatch. Paddle-TRT FC "
              "converter expects x_dim.nbDims > x_num_col_dims, but "
              "x_dim.nbDims : %d, x_num_col_dims : %d.",
              x_dim.nbDims,
              x_num_col_dims));
      auto* reshape_before_fc_layer =
          reshape_before_fc(X, x_dim, x_num_col_dims, output_name);
      auto* reshape_itensor = reshape_before_fc_layer->getOutput(0);
      if (enable_int8 || support_int8) {
        engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
      }
      regist_fc(reshape_itensor, n_output, weight, bias);
P
Pei Yang 已提交
417
    }
418 419 420 421 422 423 424
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
425
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);