vol2col.cu 15.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

A
Abhinav Arora 已提交
15 16
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/math/vol2col.h"
18 19
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
W
Wilber 已提交
20
#include "paddle/pten/backends/gpu/gpu_context.h"
C
chengduoZH 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {
namespace math {

template <class T>
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
C
chengduoZH 已提交
28 29 30 31 32
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
33 34 35 36 37 38
                        int output_width, T* data_col,
                        const DataLayout data_layout) {
  int input_channels =
      num_kernels / output_detph / output_height / output_width;
  int channels_col =
      input_channels * filter_depth * filter_height * filter_width;
C
chengduoZH 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    int w_out = index % output_width;
    int h_out = (index / output_width) % output_height;
    int d_out = (index / output_width / output_height) % output_detph;
    int channel_in = index / output_width / output_height / output_detph;
    int channel_out = channel_in * filter_depth * filter_height * filter_width;
    int w_in = w_out * stride_width - padding_width;
    int h_in = h_out * stride_height - padding_height;
    int d_in = d_out * stride_depth - padding_depth;

    data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
                    output_width +
                w_out;
    for (int k = 0; k < filter_depth; ++k) {
      for (int i = 0; i < filter_height; ++i) {
        for (int j = 0; j < filter_width; ++j) {
C
chengduoZH 已提交
56 57 58
          int d = d_in + k * dilation_d;
          int h = h_in + i * dilation_h;
          int w = w_in + j * dilation_w;
59
          int vol_idx;
60
          if (data_layout != DataLayout::kNHWC) {
61 62 63 64 65
            vol_idx = ((channel_in * depth + d) * height + h) * width + w;
          } else {
            vol_idx =
                ((d * height + h) * width + w) * input_channels + channel_in;
          }
C
chengduoZH 已提交
66 67
          *data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
                       w < width)
68
                          ? data_vol[vol_idx]
C
chengduoZH 已提交
69 70 71 72 73 74 75 76 77
                          : 0;
          data_col += output_detph * output_height * output_width;
        }
      }
    }
  }
}

/*
78 79 80 81
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
82 83 84 85
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
W
Wilber 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
// template <class DeviceContext, class T>
// class Vol2ColFunctor {
//  public:
template <class DeviceContext, class T>
void Vol2ColFunctor<DeviceContext, T>::operator()(
    const DeviceContext& context, const framework::Tensor& vol,
    const std::vector<int>& dilations, const std::vector<int>& strides,
    const std::vector<int>& paddings, framework::Tensor* col,
    const DataLayout data_layout) const {
  PADDLE_ENFORCE_EQ(vol.dims().size(), 4,
                    platform::errors::InvalidArgument(
                        "The dimension of  vol should be 4, but received %d.",
                        vol.dims().size()));
  PADDLE_ENFORCE_EQ(col->dims().size(), 7,
                    platform::errors::InvalidArgument(
                        "The dimension of col should be 7, but received %d.",
                        col->dims().size()));
C
chengduoZH 已提交
103

W
Wilber 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
  int input_channels =
      (data_layout != DataLayout::kNHWC ? vol.dims()[0] : vol.dims()[3]);
  int input_depth =
      (data_layout != DataLayout::kNHWC ? vol.dims()[1] : vol.dims()[0]);
  int input_height =
      (data_layout != DataLayout::kNHWC ? vol.dims()[2] : vol.dims()[1]);
  int input_width =
      (data_layout != DataLayout::kNHWC ? vol.dims()[3] : vol.dims()[2]);
  int filter_depth = col->dims()[1];
  int filter_height = col->dims()[2];
  int filter_width = col->dims()[3];
  int output_depth = col->dims()[4];
  int output_height = col->dims()[5];
  int output_width = col->dims()[6];
C
chengduoZH 已提交
118

W
Wilber 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  bool paddings_size_is_6 = (paddings.size() == 6);
  int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
  int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
  int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
  int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
  int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
  int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];
  auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                          ((dilations[0] * (filter_depth - 1) + 1))) /
                             strides[0] +
                         1;
  PADDLE_ENFORCE_EQ(input_depth_tmp, output_depth,
                    platform::errors::InvalidArgument(
                        "input_depth(%d) and output_depth(%d) are mismatching.",
                        input_depth_tmp, output_depth));
  auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                           ((dilations[1] * (filter_height - 1) + 1))) /
                              strides[1] +
                          1;
  PADDLE_ENFORCE_EQ(
      input_height_tmp, output_height,
      platform::errors::InvalidArgument(
          "input_height(%d) and output_height(%d) are mismatching.",
          input_height_tmp, output_height));
  auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                          ((dilations[2] * (filter_width - 1) + 1))) /
                             strides[2] +
                         1;
  PADDLE_ENFORCE_EQ(input_width_tmp, output_width,
                    platform::errors::InvalidArgument(
                        "input_width(%d) and output_width(%d) are mismatching.",
                        input_width_tmp, output_width));
C
chengduoZH 已提交
151

W
Wilber 已提交
152 153
  int num_outputs =
      input_channels * output_depth * output_height * output_width;
C
chengduoZH 已提交
154

W
Wilber 已提交
155
  int max_threads = 1024;
F
feng_shuai 已提交
156
#ifdef WITH_NV_JETSON
W
Wilber 已提交
157
  platform::ChangeThreadNum(context, &max_threads);
F
feng_shuai 已提交
158 159
#endif

W
Wilber 已提交
160 161
  const int threads = max_threads;
  const int blocks = (num_outputs + max_threads - 1) / max_threads;
F
feng_shuai 已提交
162

W
Wilber 已提交
163 164 165 166 167 168 169 170
  vol2col<T><<<blocks, threads, 0, context.stream()>>>(
      num_outputs, vol.data<T>(), input_depth, input_height, input_width,
      dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
      filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
      pad_w_left, output_depth, output_height, output_width, col->data<T>(),
      data_layout);
}
// };
C
chengduoZH 已提交
171 172 173

template <class T>
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
C
chengduoZH 已提交
174 175 176 177 178
                        int height, int width, int dilation_d, int dilation_h,
                        int dilation_w, int filter_depth, int filter_height,
                        int filter_width, int stride_depth, int stride_height,
                        int stride_width, int padding_depth, int padding_height,
                        int padding_width, int output_detph, int output_height,
179 180
                        int output_width, T* data_vol,
                        const DataLayout data_layout) {
C
chengduoZH 已提交
181 182 183 184
  const int d_filter_depth = dilation_d * (filter_depth - 1) + 1;
  const int d_filter_height = dilation_h * (filter_height - 1) + 1;
  const int d_filter_width = dilation_w * (filter_width - 1) + 1;

185
  int input_channels = num_kernels / depth / height / width;
C
chengduoZH 已提交
186 187 188
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
       index += blockDim.x * gridDim.x) {
    T src_val = 0;
189
    int w = (data_layout != DataLayout::kNHWC
190 191
                 ? index % width + padding_width
                 : (index / input_channels) % width + padding_width);
192
    int h = (data_layout != DataLayout::kNHWC
193 194
                 ? (index / width) % height + padding_height
                 : (index / input_channels / width) % height + padding_height);
195
    int d = (data_layout != DataLayout::kNHWC
196 197
                 ? (index / width / height) % depth + padding_depth
                 : index / input_channels / width / height + padding_depth);
198
    int c = (data_layout != DataLayout::kNHWC ? index / width / height / depth
199
                                              : index % input_channels);
C
chengduoZH 已提交
200

C
chengduoZH 已提交
201 202
    // compute the start and end of the output
    int w_col_start =
C
chengduoZH 已提交
203
        (w < d_filter_width) ? 0 : (w - d_filter_width) / stride_width + 1;
C
chengduoZH 已提交
204 205
    int w_col_end = min(w / stride_width + 1, output_width);
    int h_col_start =
C
chengduoZH 已提交
206
        (h < d_filter_height) ? 0 : (h - d_filter_height) / stride_height + 1;
C
chengduoZH 已提交
207 208
    int h_col_end = min(h / stride_height + 1, output_height);
    int d_col_start =
C
chengduoZH 已提交
209
        (d < d_filter_depth) ? 0 : (d - d_filter_depth) / stride_depth + 1;
C
chengduoZH 已提交
210 211 212 213 214
    int d_col_end = min(d / stride_depth + 1, output_detph);

    for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
      for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
        for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
C
chengduoZH 已提交
215 216 217 218 219 220 221 222 223 224 225 226
          int d_off = (d - d_col * stride_depth);
          int h_off = (h - h_col * stride_height);
          int w_off = (w - w_col * stride_width);
          if (d_off % dilation_d == 0 && h_off % dilation_h == 0 &&
              w_off % dilation_w == 0) {
            d_off /= dilation_d;
            h_off /= dilation_h;
            w_off /= dilation_w;

            int data_col_index =
                (((((c * filter_depth + d_off) * filter_height + h_off) *
                       filter_width +
227 228 229
                   w_off)));
            data_col_index =
                ((data_col_index * output_detph + d_col) * output_height +
C
chengduoZH 已提交
230 231 232 233 234
                 h_col) *
                    output_width +
                w_col;
            src_val += data_col[data_col_index];
          }
C
chengduoZH 已提交
235 236 237 238 239 240 241 242
        }
      }
    }
    data_vol[index] = src_val;
  }
}

/*
243 244 245 246
 * im = [input_channels,intpu_depth, input_height, input_width] for
 * channels_first
 * im = [input_depth, input_height, input_width, input_channels] for
 * channels_last
C
chengduoZH 已提交
247 248 249 250
 * col =
 *   [input_channels, filter_depth, filter_height, filter_width,
 *                    output_depth, output_height, output_width]
 */
W
Wilber 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
// template <class DeviceContext, class T>
// class Col2VolFunctor<DeviceContext, T> {
//  public:
template <class DeviceContext, class T>
void Col2VolFunctor<DeviceContext, T>::operator()(
    const DeviceContext& context, const framework::Tensor& col,
    const std::vector<int>& dilations, const std::vector<int>& strides,
    const std::vector<int>& paddings, framework::Tensor* vol,
    const DataLayout data_layout) const {
  PADDLE_ENFORCE_EQ(vol->dims().size(), 4,
                    platform::errors::InvalidArgument(
                        "The dimension of vol  should be 4, but received %d.",
                        vol->dims().size()));
  PADDLE_ENFORCE_EQ(col.dims().size(), 7,
                    platform::errors::InvalidArgument(
                        "The dimension of col  should be 7, but received %d.",
                        col.dims().size()));
C
chengduoZH 已提交
268

W
Wilber 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282
  int input_channels =
      (data_layout != DataLayout::kNHWC ? vol->dims()[0] : vol->dims()[3]);
  int input_depth =
      (data_layout != DataLayout::kNHWC ? vol->dims()[1] : vol->dims()[0]);
  int input_height =
      (data_layout != DataLayout::kNHWC ? vol->dims()[2] : vol->dims()[1]);
  int input_width =
      (data_layout != DataLayout::kNHWC ? vol->dims()[3] : vol->dims()[2]);
  int filter_depth = col.dims()[1];
  int filter_height = col.dims()[2];
  int filter_width = col.dims()[3];
  int output_depth = col.dims()[4];
  int output_height = col.dims()[5];
  int output_width = col.dims()[6];
C
chengduoZH 已提交
283

W
Wilber 已提交
284 285 286 287 288 289 290
  bool paddings_size_is_6 = (paddings.size() == 6);
  int pad_d_forth = paddings_size_is_6 ? paddings[0] : paddings[0];
  int pad_d_back = paddings_size_is_6 ? paddings[1] : paddings[0];
  int pad_h_up = paddings_size_is_6 ? paddings[2] : paddings[1];
  int pad_h_down = paddings_size_is_6 ? paddings[3] : paddings[1];
  int pad_w_left = paddings_size_is_6 ? paddings[4] : paddings[2];
  int pad_w_right = paddings_size_is_6 ? paddings[5] : paddings[2];
L
liym27 已提交
291

W
Wilber 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
  auto input_depth_tmp = (input_depth + pad_d_forth + pad_d_back -
                          ((dilations[0] * (filter_depth - 1) + 1))) /
                             strides[0] +
                         1;
  PADDLE_ENFORCE_EQ(input_depth_tmp, output_depth,
                    platform::errors::InvalidArgument(
                        "input_depth(%d) and output_depth(%d) are mismatching.",
                        input_depth_tmp, output_depth));
  auto input_height_tmp = (input_height + pad_h_up + pad_h_down -
                           ((dilations[1] * (filter_height - 1) + 1))) /
                              strides[1] +
                          1;
  PADDLE_ENFORCE_EQ(
      input_height_tmp, output_height,
      platform::errors::InvalidArgument(
          "input_height(%d) and output_height(%d) are mismatching.",
          input_height_tmp, output_height));
  auto input_width_tmp = (input_width + pad_w_left + pad_w_right -
                          ((dilations[2] * (filter_width - 1) + 1))) /
                             strides[2] +
                         1;
  PADDLE_ENFORCE_EQ(input_width_tmp, output_width,
                    platform::errors::InvalidArgument(
                        "input_width(%d) and output_width(%d) are mismatching.",
                        input_width_tmp, output_width));
C
chengduoZH 已提交
317

W
Wilber 已提交
318
  int num_kernels = input_channels * input_depth * input_height * input_width;
C
chengduoZH 已提交
319

W
Wilber 已提交
320
  int max_threads = 1024;
F
feng_shuai 已提交
321
#ifdef WITH_NV_JETSON
W
Wilber 已提交
322
  platform::ChangeThreadNum(context, &max_threads);
F
feng_shuai 已提交
323 324
#endif

W
Wilber 已提交
325 326
  const int threads = max_threads;
  const int blocks = (num_kernels + max_threads - 1) / max_threads;
C
chengduoZH 已提交
327

W
Wilber 已提交
328 329 330 331 332 333 334 335
  col2vol<T><<<blocks, threads, 0, context.stream()>>>(
      num_kernels, col.data<T>(), input_depth, input_height, input_width,
      dilations[0], dilations[1], dilations[2], filter_depth, filter_height,
      filter_width, strides[0], strides[1], strides[2], pad_d_forth, pad_h_up,
      pad_w_left, output_depth, output_height, output_width, vol->data<T>(),
      data_layout);
}
// };
C
chengduoZH 已提交
336

Q
QI JUN 已提交
337 338
template class Vol2ColFunctor<platform::CUDADeviceContext, float>;
template class Vol2ColFunctor<platform::CUDADeviceContext, double>;
W
Wilber 已提交
339 340 341
template class Vol2ColFunctor<pten::GPUContext, float>;
template class Vol2ColFunctor<pten::GPUContext, double>;

Q
QI JUN 已提交
342 343
template class Col2VolFunctor<platform::CUDADeviceContext, float>;
template class Col2VolFunctor<platform::CUDADeviceContext, double>;
W
Wilber 已提交
344 345
template class Col2VolFunctor<pten::GPUContext, float>;
template class Col2VolFunctor<pten::GPUContext, double>;
C
chengduoZH 已提交
346 347 348 349

}  // namespace math
}  // namespace operators
}  // namespace paddle