elementwise_div_op.cu 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17
#include "paddle/fluid/platform/complex.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
19 20

namespace ops = paddle::operators;
21 22 23 24 25
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34 35 36 37
template <typename T>
class ElementwiseDivKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();

    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
38
        cuda_ctx, ins, &outs, axis, DivFunctor<T>());
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  }
};

template <typename T>
static __global__ void SimpleElemwiseDivGradCUDAKernel(const T* x, const T* y,
                                                       const T* out,
                                                       const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    T o = dout[col];
    dx[col] = o / y[col];
    dy[col] = -o * out[col] / y[col];
    col += blockDim.x * gridDim.x;
  }
}

58
template <>
59 60 61 62 63 64 65 66
__global__ void
SimpleElemwiseDivGradCUDAKernel<paddle::platform::complex<float>>(
    const paddle::platform::complex<float>* x,
    const paddle::platform::complex<float>* y,
    const paddle::platform::complex<float>* out,
    const paddle::platform::complex<float>* dout, int64_t size,
    paddle::platform::complex<float>* dx,
    paddle::platform::complex<float>* dy) {
67 68 69
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
70 71 72 73
    paddle::platform::complex<float> o = dout[col];
    paddle::platform::complex<float> y_conj(y[col].real, -y[col].imag);
    paddle::platform::complex<float> out_div_y_conj((out[col] / y[col]).real,
                                                    -(out[col] / y[col]).imag);
74 75 76 77 78 79 80
    dx[col] = o / y_conj;
    dy[col] = -o * out_div_y_conj;
    col += blockDim.x * gridDim.x;
  }
}

template <>
81 82 83 84 85 86 87 88
__global__ void
SimpleElemwiseDivGradCUDAKernel<paddle::platform::complex<double>>(
    const paddle::platform::complex<double>* x,
    const paddle::platform::complex<double>* y,
    const paddle::platform::complex<double>* out,
    const paddle::platform::complex<double>* dout, int64_t size,
    paddle::platform::complex<double>* dx,
    paddle::platform::complex<double>* dy) {
89 90 91
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
92 93 94 95
    paddle::platform::complex<double> o = dout[col];
    paddle::platform::complex<double> y_conj(y[col].real, -y[col].imag);
    paddle::platform::complex<double> out_div_y_conj((out[col] / y[col]).real,
                                                     -(out[col] / y[col]).imag);
96 97 98 99 100 101
    dx[col] = o / y_conj;
    dy[col] = -o * out_div_y_conj;
    col += blockDim.x * gridDim.x;
  }
}

102 103 104 105 106 107 108 109
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_div_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
110
  dim3 block_size = dim3(ELEMENTWISE_BLOCK_SIZE, 1);
111
  auto size = x->numel();
112
  dim3 grid_size =
113
      dim3((size + ELEMENTWISE_BLOCK_SIZE - 1) / ELEMENTWISE_BLOCK_SIZE, 1);
114
  SimpleElemwiseDivGradCUDAKernel<
115
      T><<<grid_size, block_size, 0,
116 117 118 119 120 121 122
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      x->data<T>(), y->data<T>(), out->data<T>(), dout->data<T>(), size,
      dx->mutable_data<T>(ctx.GetPlace()), dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
123

Q
QI JUN 已提交
124
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
125
    elementwise_div,
Q
QI JUN 已提交
126
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, float>,
W
Wu Yi 已提交
127 128
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
129 130
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int>,
131 132
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
133
                              paddle::platform::complex<float>>,
134
    ops::ElementwiseDivKernel<paddle::platform::CUDADeviceContext,
135
                              paddle::platform::complex<double>>);
Q
QI JUN 已提交
136
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
137
    elementwise_div_grad,
Q
QI JUN 已提交
138
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, float>,
W
Wu Yi 已提交
139 140
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
141 142
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, int>,
143 144
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
145
                                  paddle::platform::complex<float>>,
Q
QI JUN 已提交
146
    ops::ElementwiseDivGradKernel<paddle::platform::CUDADeviceContext,
147
                                  paddle::platform::complex<double>>);
148 149 150 151
REGISTER_OP_CUDA_KERNEL(
    elementwise_div_grad_grad,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
152 153
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::float16>,
154 155 156 157 158
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
159 160
                                        int64_t>,
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
161
                                        paddle::platform::complex<float>>,
162
    ops::ElementwiseDivDoubleGradKernel<paddle::platform::CUDADeviceContext,
163
                                        paddle::platform::complex<double>>);