conv_cudnn_op.cu.cc 16.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
武毅 已提交
22

Y
Yu Yang 已提交
23
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
24 25
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
26
            "true, the algorithm is deterministic.");
C
chengduoZH 已提交
27

武毅 已提交
28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
36 37
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
38

Q
qiaolongfei 已提交
39 40
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
41 42

template <typename T>
43
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
44 45 46
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
47
                   "It must use CUDAPlace.");
武毅 已提交
48 49 50 51 52 53 54 55
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
56 57
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
58 59 60 61 62 63 64 65 66 67 68

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
69 70 71 72 73 74 75
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
76
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
77 78 79
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
80
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
81 82 83
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
84

C
chengduoZH 已提交
85 86 87 88 89 90
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
91 92

    int input_channels = input->dims()[1];
武毅 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
114

武毅 已提交
115 116
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
117
    int group_offset_out =
武毅 已提交
118
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
119 120 121 122
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
123 124
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
武毅 已提交
125 126 127
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
128
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
QI JUN 已提交
129
    auto handle = dev_ctx.cudnn_handle();
130

131 132 133 134 135
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

136 137 138 139 140 141 142 143 144
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
145
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
C
chengduo 已提交
146
      VLOG(5) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
147
    } else {
148 149
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
C
chengduo 已提交
150
      VLOG(5) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
151
    }
152
#endif
K
Kexin Zhao 已提交
153

武毅 已提交
154
    // get workspace size able to allocate
W
Wu Yi 已提交
155
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
156 157
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
158 159 160 161 162
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

武毅 已提交
163
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
164
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
S
sneaxiy 已提交
165
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
武毅 已提交
166
    for (int i = 0; i < groups; i++) {
167 168 169 170 171 172 173
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_filter_desc, filter_data + i * group_offset_filter,
            cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
            &beta, cudnn_output_desc, output_data + i * group_offset_out));
      };
S
sneaxiy 已提交
174
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
175 176 177 178 179
    }
  }
};

template <typename T>
180
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
181 182 183
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
184
                   "It must use CUDAPlace.");
武毅 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
199 200
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
201 202 203 204 205 206 207 208 209

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
210 211 212 213 214 215 216
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
217
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
218 219 220
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
221
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
222 223 224
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
225

C
chengduoZH 已提交
226 227
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
228
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
229 230 231 232
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
233 234

    int input_channels = input->dims()[1];
武毅 已提交
235 236 237 238 239 240 241 242 243 244 245
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
246
    int output_grad_channels = filter->dims()[0];
武毅 已提交
247 248 249 250 251 252 253 254 255 256
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
257

武毅 已提交
258 259 260 261
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
262 263 264 265 266 267
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
268 269
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
武毅 已提交
270 271
    }

272
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
Q
QI JUN 已提交
273
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
274
    if (input_grad) {
275
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
276
        CUDNN_ENFORCE(
C
chengduoZH 已提交
277 278 279 280 281 282 283 284 285 286 287
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
288 289
      } else {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
C
chengduoZH 已提交
290
      }
291

W
Wu Yi 已提交
292
      CUDNN_ENFORCE(
武毅 已提交
293 294
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
295
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
296 297 298 299
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
300
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
301
        CUDNN_ENFORCE(
C
chengduoZH 已提交
302 303 304 305 306
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
307 308
      } else {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
C
chengduoZH 已提交
309
      }
310

W
Wu Yi 已提交
311
      CUDNN_ENFORCE(
武毅 已提交
312 313 314 315 316
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
317

武毅 已提交
318
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
319
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
S
sneaxiy 已提交
320
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
武毅 已提交
321 322
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
323 324
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
325
      for (int i = 0; i < groups; i++) {
326 327 328 329 330 331 332 333
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
              handle, &alpha, cudnn_filter_desc,
              filter_data + i * group_offset_filter, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              data_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_input_desc, input_grad_data + i * group_offset_in));
        };
S
sneaxiy 已提交
334
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
335 336 337 338 339
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
340
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
341
      for (int i = 0; i < groups; i++) {
342 343 344 345 346 347 348 349
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
              handle, &alpha, cudnn_input_desc,
              input_data + i * group_offset_in, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              filter_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_filter_desc, filter_grad_data + i * group_offset_filter));
        };
S
sneaxiy 已提交
350
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
351 352 353 354 355 356 357 358
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
359 360
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
361
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
362
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
363
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
364
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
365
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
366 367
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
368

K
Kexin Zhao 已提交
369
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
370
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
371 372
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
373
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
374
                   paddle::operators::CUDNNConvGradOpKernel<float>,
375
                   paddle::operators::CUDNNConvGradOpKernel<double>);