gaussian_random_op.cc 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dongzhihong 已提交
14

Q
qijun 已提交
15
#include <random>
Y
yaoxuefeng 已提交
16

Y
Yi Wang 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/operators/fill_constant_op.h"
19 20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

D
dongzhihong 已提交
23 24
namespace paddle {
namespace operators {
D
dongzhihong 已提交
25

26
using Tensor = framework::Tensor;
Q
qijun 已提交
27
template <typename T>
Y
Yu Yang 已提交
28
class CPUGaussianRandomKernel : public framework::OpKernel<T> {
29 30 31 32 33 34 35 36 37 38 39
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
    auto* tensor = context.Output<framework::Tensor>("Out");
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
Y
yaoxuefeng 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    std::normal_distribution<T> dist(mean, std);

    const std::string op_type = "gaussian_random";
    auto shape = GetShape(context, op_type);
    tensor->Resize(shape);
    int64_t size = tensor->numel();
    T* data = tensor->mutable_data<T>(context.GetPlace());

    for (int64_t i = 0; i < size; ++i) {
      data[i] = dist(engine);
    }
  }
};

template <typename T>
class CPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
Q
qijun 已提交
57 58
 public:
  void Compute(const framework::ExecutionContext& context) const override {
Y
Yu Yang 已提交
59 60
    float mean = context.Attr<float>("mean");
    float std = context.Attr<float>("std");
Q
qijun 已提交
61 62 63
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());

Y
Yu Yang 已提交
64
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Q
qijun 已提交
65 66 67 68 69 70
    std::minstd_rand engine;
    if (seed == 0) {
      seed = std::random_device()();
    }
    engine.seed(seed);
    std::normal_distribution<T> dist(mean, std);
71
    int64_t size = tensor->numel();
Q
qijun 已提交
72
    for (int64_t i = 0; i < size; ++i) {
Q
qijun 已提交
73 74 75 76 77
      data[i] = dist(engine);
    }
  }
};

D
dongzhihong 已提交
78
class GaussianRandomOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
79 80
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
81

82
  void InferShape(framework::InferShapeContext* ctx) const override {
83 84
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "GaussianRandom");

T
tangwei12 已提交
85
    auto shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
Q
qijun 已提交
86
    std::vector<int64_t> temp;
87 88
    temp.reserve(shape.size());
    for (auto dim : shape) {
Q
qijun 已提交
89 90
      temp.push_back(static_cast<int64_t>(dim));
    }
91 92 93 94 95 96 97 98 99 100 101
    if (shape.empty() && ctx->HasInput("ShapeTensor")) {
      auto shape_dims = ctx->GetInputDim("ShapeTensor");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      ctx->SetOutputDim("Out", framework::make_ddim(vec_dims));

      return;
    }
102
    if (!ctx->HasInput("ShapeTensor") && !ctx->HasInputs("ShapeTensorList")) {
103 104 105 106 107 108 109 110
      PADDLE_ENFORCE_GT(
          shape.size(), 0UL,
          platform::errors::InvalidArgument(
              "Attribute(shape) of GaussianRandomOp must be set "
              "and shape.size() > 0, but reveived shape.size() is %d",
              shape.size()));
    }

Q
Qiao Longfei 已提交
111
    ctx->SetOutputDim("Out", framework::make_ddim(temp));
D
dongzhihong 已提交
112
  }
Y
Yu Yang 已提交
113

114
 protected:
115
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
116
      const framework::ExecutionContext& ctx) const override {
117 118 119 120 121 122 123 124 125 126 127
    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

Y
Yu Yang 已提交
128
    return framework::OpKernelType(
129
        static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
130
        ctx.device_context(), layout, library);
Y
Yu Yang 已提交
131
  }
132 133 134 135 136 137 138 139 140 141

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "ShapeTensor" || var_name == "ShapeTensorList") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
D
dongzhihong 已提交
142 143
};

D
dongzhihong 已提交
144
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
145
 public:
Y
Yu Yang 已提交
146
  void Make() override {
K
kexinzhao 已提交
147
    AddOutput("Out", "Output matrix of gaussian random op");
148

T
tangwei12 已提交
149 150
    AddAttr<std::vector<int64_t>>("shape",
                                  "(vector<int64_t>) "
151 152 153 154 155 156 157 158 159 160 161 162
                                  "The dimension of random tensor.")
        .SetDefault({});
    AddInput("ShapeTensor",
             "(Tensor<int>), optional). The shape of the output."
             "It has a higher priority than Attr(shape).")
        .AsDispensable();
    AddInput("ShapeTensorList",
             "(vector<Tensor<int>>, optional). The shape of the output. "
             "It has a higher priority than Attr(shape)."
             "The shape of the element in vector must be [1].")
        .AsDuplicable()
        .AsDispensable();
K
kexinzhao 已提交
163 164 165 166 167 168 169 170
    AddAttr<float>("mean",
                   "(float, default 0.0) "
                   "mean of random tensor.")
        .SetDefault(.0f);
    AddAttr<float>("std",
                   "(float, default 1.0) "
                   "std of random tensor.")
        .SetDefault(1.0f);
Q
qijun 已提交
171
    AddAttr<int>("seed",
K
kexinzhao 已提交
172
                 "(int, default 0) "
Q
qijun 已提交
173
                 "Random seed of generator."
174 175 176
                 "0 means use system wide seed."
                 "Note that if seed is not 0, this operator will always "
                 "generate the same random numbers every time.")
Q
qijun 已提交
177
        .SetDefault(0);
F
fengjiayi 已提交
178
    AddAttr<int>("dtype",
K
kexinzhao 已提交
179 180
                 "(int, default 5(FP32)) "
                 "Output data type.")
181
        .SetDefault(framework::proto::VarType::FP32);
182 183 184
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
kexinzhao 已提交
185 186 187 188 189 190
    AddComment(R"DOC(
GaussianRandom Operator.

Used to initialize tensors with gaussian random generator.

)DOC");
D
dongzhihong 已提交
191 192 193 194 195 196
  }
};

}  // namespace operators
}  // namespace paddle

197
namespace ops = paddle::operators;
F
fengjiayi 已提交
198 199
REGISTER_OP_WITHOUT_GRADIENT(gaussian_random, ops::GaussianRandomOp,
                             ops::GaussianRandomOpMaker);
200 201 202
REGISTER_OP_CPU_KERNEL(gaussian_random, ops::CPUGaussianRandomKernel<float>,
                       ops::CPUGaussianRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(gaussian_random_batch_size_like,
203 204
                       ops::CPUGaussianRandomBatchSizeLikeKernel<float>,
                       ops::CPUGaussianRandomBatchSizeLikeKernel<double>);