cuda_streams_py.cc 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>

#include "paddle/fluid/platform/event.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
#include "paddle/fluid/pybind/cuda_streams_py.h"

namespace py = pybind11;

namespace paddle {
namespace pybind {
void BindCudaStream(py::module *m_ptr) {
  auto &m = *m_ptr;

  // Bind Methods
  m.def("_get_current_stream",
        [](int deviceId) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
          return paddle::platform::stream::get_current_stream(deviceId);
#else
          PADDLE_THROW(platform::errors::Unavailable(
              "Paddle is not compiled with CUDA. Cannot visit cuda current "
              "stream."));
#endif
        },
        py::return_value_policy::reference);

  m.def("_device_synchronize", [](int device_id) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (device_id == -1) {
      device_id = paddle::platform::GetCurrentDeviceId();
    }

    int curr_device_id = paddle::platform::GetCurrentDeviceId();
    paddle::platform::SetDeviceId(device_id);
#ifdef PADDLE_WITH_HIP
    PADDLE_ENFORCE_CUDA_SUCCESS(hipDeviceSynchronize());
#else
    PADDLE_ENFORCE_CUDA_SUCCESS(cudaDeviceSynchronize());
#endif
    paddle::platform::SetDeviceId(curr_device_id);
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "Paddle is not compiled with CUDA. Cannot visit device synchronize."));
#endif
  });

  py::class_<paddle::platform::stream::CUDAStream>(m, "CUDAStream", R"DOC(
      The handle of the CUDA stream.

      Parameters:
        device(paddle.CUDAPlace()|int|None, optional): The device which wanted to allocate the stream. 
        If device is None or negative integer, device will be the current device. 
        If device is positive integer, it must less than the device count. Default: None. 

        priority(int|None, optional): The priority of stream. The priority can be 1(high) or 2(normal).
        If prioriyt is None, the priority is 2(normal). Default: None. 

      Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            s1 = paddle.device.cuda.Stream(paddle.CUDAPlace(0), 1)
            s2 = paddle.device.cuda.Stream(0, 1)
            s3 = paddle.device.cuda.Stream()

  )DOC")
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("wait_event",
           [](paddle::platform::stream::CUDAStream &self,
              paddle::platform::CudaEvent &event) {
             self.WaitEvent(event.GetRawCudaEvent());
           },
           R"DOC(
      Makes all future work submitted to stream wait for all work captured in event.

      Parameters:
        event(CUDAEvent): The event to wait on.
      
      Examples:
        .. code-block:: python

          # required: gpu
          import paddle
          s = paddle.device.cuda.Stream(paddle.CUDAPlace(0), 1)
          event = paddle.device.cuda.Event()
          s.wait_event(event)

           )DOC")
      .def("wait_stream",
           [](paddle::platform::stream::CUDAStream &self,
              paddle::platform::stream::CUDAStream &stream) {
108
             paddle::platform::CudaEvent event;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
             event.Record(stream);

             self.WaitEvent(event.GetRawCudaEvent());
           },
           R"DOC(
      Synchronizes with the given stream.

      Parameters:
        stream(CUDAStream): The stream to synchronize with.
      
      Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            s1 = paddle.device.cuda.Stream(paddle.CUDAPlace(0), 1)
            s2 = paddle.device.cuda.Stream(0, 1)
            s1.wait_stream(s2)

           )DOC")
      .def("query",
           [](paddle::platform::stream::CUDAStream &self) {
             return self.Query();
           },
           R"DOC(
      Return the status whether if all operations in stream have completed.

      Returns: A boolean value.

      Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            s = paddle.device.cuda.Stream(paddle.CUDAPlace(0), 1)
            is_done = s.query()

           )DOC")
      .def("synchronize",
           [](paddle::platform::stream::CUDAStream &self) {
             self.Synchronize();
           },
           R"DOC(
      Waits for stream tasks to complete.

      Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            s = paddle.device.cuda.Stream(paddle.CUDAPlace(0), 1)
            s.synchronize()

           )DOC")
      .def("record_event",
           [](paddle::platform::stream::CUDAStream &self,
              paddle::platform::CudaEvent *event) {
             if (event == nullptr) {
167
               event = new paddle::platform::CudaEvent();
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
             }
             event->Record(self);
             return event;
           },
           R"DOC(
      Record a CUDA event in the stream.

      Parameters:
          event(CUDAEvent, optional): The event to be record. If event is None, a new event is created.
          Default: None.
      
      Returns:
          The recored event.

      Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            s = paddle.device.cuda.Stream(paddle.CUDAPlace(0), 1)
            event = s.record_event()

           )DOC",
           py::arg("event") = nullptr)
#endif
      .def("__init__",
           [](paddle::platform::stream::CUDAStream &self,
              platform::CUDAPlace *device, int priority) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
             if (priority != 1 && priority != 2) {
               PADDLE_THROW(platform::errors::InvalidArgument(
                   "Priority should be 1(high) or 2(normal) "));
             }
             auto prio = paddle::platform::stream::Priority(priority);

             if (device == nullptr) {
               int curr_device_id = platform::GetCurrentDeviceId();
               auto device_tmp = platform::CUDAPlace(curr_device_id);
               device = &device_tmp;
             }

             new (&self) paddle::platform::stream::CUDAStream(*device, prio);
#else
            PADDLE_THROW(platform::errors::Unavailable(
        "Class CUDAStream can only be initialized on the GPU platform."));
#endif
           },
           py::arg("device") = nullptr, py::arg("priority") = 2)
      .def(
          "__init__",
          [](paddle::platform::stream::CUDAStream &self, int device,
             int priority) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
            if (priority != 1 && priority != 2) {
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "Priority should be 1(high) or 2(normal) "));
            }
            auto prio = paddle::platform::stream::Priority(priority);

            int device_count = platform::GetCUDADeviceCount();
            if (device < 0) {
              device = platform::GetCurrentDeviceId();
            }
            if (device >= device_count) {
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "The device id  must be inside [0, %d), but input device=%d.",
                  device_count, device));
            }

            new (&self) paddle::platform::stream::CUDAStream(
                platform::CUDAPlace(device), prio);
#else
            PADDLE_THROW(platform::errors::Unavailable(
        "Class CUDAStream can only be initialized on the GPU platform."));
#endif
          },
          py::arg("device") = -1, py::arg("priority") = 2)
      .def("__init__", [](paddle::platform::stream::CUDAStream &self) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        auto prio = paddle::platform::stream::Priority::kNormal;

        int device_id = platform::GetCurrentDeviceId();

        new (&self) paddle::platform::stream::CUDAStream(
            platform::CUDAPlace(device_id), prio);
#else
            PADDLE_THROW(platform::errors::Unavailable(
        "Class CUDAStream can only be initialized on the GPU platform."));
#endif
      });

  py::class_<paddle::platform::CudaEvent>(m, "CUDAEvent", R"DOC(
      The handle of the CUDA event.

      Parameters:
        enable_timing(bool, optional): Whether the event will measure time. Default: False.
        blocking(bool, optional): Whether the wait() func will be blocking. Default: False;
        interprocess(bool, optional): Whether the event can be shared between processes. Defalut: False.
      
      Examples:
        .. code-block:: python

            # required: gpu
            import paddle
            event = paddle.device.cuda.Event()

  )DOC")
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("record",
           [](paddle::platform::CudaEvent &self,
              paddle::platform::stream::CUDAStream *stream) {
             if (stream == nullptr) {
               stream = paddle::platform::stream::get_current_stream(-1);
             }
             self.Record(*stream);
           },
           R"DOC(
          Records the event in the given stream.

          Parameters:
            stream(CUDAStream, optional): The handle of CUDA stream. If None, the stream is the current stream. Default: None.
          
          Examples:
            .. code-block:: python

              # required: gpu
              import paddle
              event = paddle.device.cuda.Event()
              event.record()
    
        )DOC",
           py::arg("stream") = nullptr)
      .def("query",
           [](paddle::platform::CudaEvent &self) { return self.Query(); },
           R"DOC(
          Queries the event's status.

          Returns: A boolean which indicates all work currently captured by the event has been completed.

          Examples:
            .. code-block:: python

                # required: gpu
                import paddle
                event = paddle.device.cuda.Event()
                is_done = event.query()

           )DOC")
      .def("synchronize",
           [](paddle::platform::CudaEvent &self) { self.Synchronize(); }, R"DOC(
            Waits for an event to complete.

            Examples:
              .. code-block:: python

                # required: gpu
                import paddle
                event = paddle.device.cuda.Event()
                event.synchronize()

           )DOC")
#endif
      .def("__init__",
           [](paddle::platform::CudaEvent &self, bool enable_timing,
              bool blocking, bool interprocess) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
             unsigned int flags = platform::get_cuda_flags(
                 enable_timing, blocking, interprocess);
             new (&self) paddle::platform::CudaEvent(flags);
#else
             PADDLE_THROW(platform::errors::Unavailable(
                 "Class CUDAEvent can only be initialized on the GPU "
                 "platform."));

#endif
           },
           py::arg("enable_timing") = false, py::arg("blocking") = false,
           py::arg("interprocess") = false);
}

}  // namespace pybind

}  // namespace paddle