pool_kernel.cc 5.1 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/pool_kernel.h"
16

Z
zhangkaihuo 已提交
17 18
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
19
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
20 21 22 23 24 25 26 27 28 29 30
#include "paddle/phi/kernels/funcs/pooling.h"
#include "paddle/phi/kernels/funcs/sparse/convolution.h"
#include "paddle/phi/kernels/sparse/cpu/convolution.h"

namespace phi {
namespace sparse {

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
31
 **/
32
template <typename T, typename IntT = int>
33 34 35 36 37 38 39 40
void MaxPoolCooCPUKernel(const CPUContext& dev_ctx,
                         const SparseCooTensor& x,
                         const std::vector<int>& kernel_sizes,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         SparseCooTensor* out,
                         DenseTensor* rulebook) {
Z
zhangkaihuo 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  const auto& x_dims = x.dims();
  int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
  const std::vector<int>& real_kernel_sizes =
      phi::funcs::sparse::PoolResetKernel(kernel_sizes, x_dims[4], x_dims[4]);
  DDim out_dims = {1, 1, 1, 1, 1};
  phi::funcs::sparse::GetOutShape(
      x_dims, real_kernel_sizes, paddings, dilations, strides, &out_dims);
  const int in_channels = real_kernel_sizes[3];

  DenseTensorMeta counter_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));

  const T* in_features_ptr = x.non_zero_elements().data<T>();
  // 1. product rule book
56 57 58 59 60 61 62 63 64 65 66 67
  ProductRuleBook<T, CPUContext, IntT>(dev_ctx,
                                       x,
                                       real_kernel_sizes,
                                       paddings,
                                       dilations,
                                       strides,
                                       out_dims,
                                       false,
                                       rulebook,
                                       &counter_per_kernel);

  UpdateRulebookAndOutIndex<T, CPUContext, IntT>(
Z
zhangkaihuo 已提交
68 69 70
      dev_ctx, x, kernel_size, in_channels, out_dims, rulebook, out);

  int rulebook_len = rulebook->dims()[1];
71
  const IntT* rulebook_ptr = rulebook->data<IntT>();
Z
zhangkaihuo 已提交
72 73 74 75 76 77 78 79 80 81 82
  const int* counter_ptr = counter_per_kernel.data<int>();

  std::vector<int> offsets(kernel_size + 1);
  phi::funcs::sparse::PrefixSum(counter_ptr, &offsets[0], kernel_size);
  std::vector<bool> out_flags(out->nnz(), false);

  // 2. max pool
  T* out_features_ptr = out->mutable_non_zero_elements()->data<T>();
  phi::funcs::MaxPool<T> max_pool_functor;
  for (int i = 0; i < kernel_size; i++) {
    for (int j = 0; j < counter_ptr[i]; j++) {
83 84
      IntT in_i = rulebook_ptr[rulebook_len + offsets[i] + j];
      IntT out_i = rulebook_ptr[rulebook_len * 2 + offsets[i] + j];
Z
zhangkaihuo 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
      if (!out_flags[out_i]) {
        out_flags[out_i] = true;
        memcpy(&out_features_ptr[out_i * in_channels],
               &in_features_ptr[in_i * in_channels],
               in_channels * sizeof(T));
      } else {
        for (int c = 0; c < in_channels; c++) {
          max_pool_functor.compute(in_features_ptr[in_i * in_channels + c],
                                   &out_features_ptr[out_i * in_channels + c]);
        }
      }
    }
  }
}

100
template <typename T, typename Context>
101 102 103 104 105 106 107 108
void MaxPoolCooKernel(const Context& dev_ctx,
                      const SparseCooTensor& x,
                      const std::vector<int>& kernel_sizes,
                      const std::vector<int>& paddings,
                      const std::vector<int>& dilations,
                      const std::vector<int>& strides,
                      SparseCooTensor* out,
                      DenseTensor* rulebook) {
109
  PD_VISIT_INTEGRAL_TYPES(
110 111 112 113 114 115 116 117 118
      x.non_zero_indices().dtype(), "MaxPoolCooCPUKernel", ([&] {
        MaxPoolCooCPUKernel<T, data_t>(dev_ctx,
                                       x,
                                       kernel_sizes,
                                       paddings,
                                       dilations,
                                       strides,
                                       out,
                                       rulebook);
119 120 121
      }));
}

Z
zhangkaihuo 已提交
122 123 124
}  // namespace sparse
}  // namespace phi

125
PD_REGISTER_KERNEL(maxpool_coo,
Z
zhangkaihuo 已提交
126 127
                   CPU,
                   ALL_LAYOUT,
128
                   phi::sparse::MaxPoolCooKernel,
Z
zhangkaihuo 已提交
129 130 131 132
                   float,
                   double) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}