conv_kernel.cc 6.7 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
17
#include "paddle/phi/core/visit_type.h"
Z
zhangkaihuo 已提交
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
19
#include "paddle/phi/kernels/sparse/cpu/convolution.h"
Z
zhangkaihuo 已提交
20 21 22 23 24 25 26 27

namespace phi {
namespace sparse {

/**
 * x: (N, D, H, W, C)
 * kernel: (D, H, W, C, OC)
 * out: (N, D, H, W, OC)
28
 **/
29
template <typename T, typename IntT = int>
Z
zhangkaihuo 已提交
30 31 32 33 34 35 36 37 38 39
void Conv3dCooCPUKernel(const CPUContext& dev_ctx,
                        const SparseCooTensor& x,
                        const DenseTensor& kernel,
                        const std::vector<int>& paddings,
                        const std::vector<int>& dilations,
                        const std::vector<int>& strides,
                        const int groups,
                        const bool subm,
                        SparseCooTensor* out,
                        DenseTensor* rulebook) {
Z
zhangkaihuo 已提交
40 41 42 43 44 45 46 47
  // update padding and dilation
  // Currently, only support x.layout is NDHWC, groups = 1
  // if x.layout != NDHWC then transpose(x), transpose(weight)

  const auto& x_dims = x.dims();
  const auto& kernel_dims = kernel.dims();
  int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  DDim out_dims = {1, 1, 1, 1, 1};
Z
zhangkaihuo 已提交
48 49 50 51 52
  std::vector<int> kernel_sizes(kernel_dims.size());
  for (int i = 0; i < kernel_dims.size(); i++) {
    kernel_sizes[i] = kernel_dims[i];
  }

53 54
  std::vector<int> subm_paddings(paddings), subm_strides(strides);
  if (subm) {
55 56
    // the out shape of subm_conv is same as input shape
    // reset the padding=kernel_size/2 and strides=1
57 58 59
    phi::funcs::sparse::ResetSubmKernelSizeAndStrides(
        kernel.dims(), &subm_paddings, &subm_strides);
  }
60 61 62 63 64 65

  phi::funcs::sparse::GetOutShape(
      x_dims, kernel_sizes, subm_paddings, dilations, subm_strides, &out_dims);
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

Z
zhangkaihuo 已提交
66 67 68 69 70 71 72
  // Second algorithm:
  // https://pdfs.semanticscholar.org/5125/a16039cabc6320c908a4764f32596e018ad3.pdf
  // 1. product rulebook
  DenseTensorMeta counter_meta(
      DataType::INT32, {kernel_size}, DataLayout::NCHW);
  DenseTensor counter_per_kernel = phi::Empty(dev_ctx, std::move(counter_meta));

73 74 75 76 77 78 79 80 81 82 83 84
  ProductRuleBook<T, CPUContext, IntT>(dev_ctx,
                                       x,
                                       kernel_sizes,
                                       subm_paddings,
                                       dilations,
                                       subm_strides,
                                       out_dims,
                                       subm,
                                       rulebook,
                                       &counter_per_kernel);

  UpdateRulebookAndOutIndex<T, CPUContext, IntT>(
Z
zhangkaihuo 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
      dev_ctx, x, kernel_size, out_channels, out_dims, rulebook, out);

  int n = rulebook->dims()[1];
  const int* counter_ptr = counter_per_kernel.data<int>();

  // 2. gather
  DenseTensorMeta in_features_meta(
      x.dtype(), {n, in_channels}, DataLayout::NHWC);
  DenseTensorMeta out_features_meta(
      x.dtype(), {n, out_channels}, DataLayout::NHWC);
  phi::DenseTensor in_features =
      phi::Empty(dev_ctx, std::move(in_features_meta));
  phi::DenseTensor out_features =
      phi::Empty(dev_ctx, std::move(out_features_meta));
  T* in_features_ptr = in_features.data<T>();
  T* out_features_ptr = out_features.data<T>();

102 103 104 105 106
  Gather<T, IntT>(x.non_zero_elements().data<T>(),
                  rulebook->data<IntT>() + n,
                  n,
                  in_channels,
                  in_features_ptr);
Z
zhangkaihuo 已提交
107 108

  // 3. call gemm for every werght
109
  auto blas = phi::funcs::GetBlas<CPUContext, T>(dev_ctx);
Z
zhangkaihuo 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  std::vector<int> offsets(kernel_size + 1);
  int offset = 0;
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
    offset += counter_ptr[i];
  }
  offsets[kernel_size] = offset;

  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
    if (counter_ptr[i] <= 0) {
      continue;
    }

    // call gemm: (n, in_channels) * (in_channels, out_channels)
    const int M = counter_ptr[i];
    const int K = in_channels;   // in_channels
    const int N = out_channels;  // out_channels
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * K * N;
    T* tmp_out_ptr = out_features_ptr + offsets[i] * out_channels;
    blas.GEMM(CblasNoTrans,
              CblasNoTrans,
              M,
              N,
              K,
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_out_ptr);
  }

  // 4. scatter
  T* out_values_ptr = out->mutable_non_zero_elements()->data<T>();
  memset(out_values_ptr, 0, sizeof(T) * out->nnz() * out_channels);
146 147 148 149 150 151 152 153
  Scatter<T, IntT>(out_features_ptr,
                   rulebook->data<IntT>() + n * 2,
                   n,
                   out_channels,
                   out_values_ptr);
}

template <typename T, typename Context>
Z
zhangkaihuo 已提交
154 155 156 157 158 159 160 161 162 163
void Conv3dCooKernel(const Context& dev_ctx,
                     const SparseCooTensor& x,
                     const DenseTensor& kernel,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     const std::vector<int>& strides,
                     const int groups,
                     const bool subm,
                     SparseCooTensor* out,
                     DenseTensor* rulebook) {
164
  PD_VISIT_INTEGRAL_TYPES(
Z
zhangkaihuo 已提交
165 166 167 168 169 170 171 172 173 174 175
      x.non_zero_indices().dtype(), "Conv3dCooCPUKernel", ([&] {
        Conv3dCooCPUKernel<T, data_t>(dev_ctx,
                                      x,
                                      kernel,
                                      paddings,
                                      dilations,
                                      strides,
                                      groups,
                                      subm,
                                      out,
                                      rulebook);
176
      }));
Z
zhangkaihuo 已提交
177 178 179 180 181 182
}

}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(
Z
zhangkaihuo 已提交
183
    conv3d_coo, CPU, ALL_LAYOUT, phi::sparse::Conv3dCooKernel, float, double) {
Z
zhangkaihuo 已提交
184 185
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}