DetectionMAPEvaluator.cpp 10.7 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Evaluator.h"
#include "paddle/gserver/layers/DetectionUtil.h"

using std::map;
using std::vector;
using std::pair;
using std::make_pair;

namespace paddle {

/**
 * @brief detection map Evaluator
 *
 * The config file api is detection_map_evaluator.
 */
class DetectionMAPEvaluator : public Evaluator {
public:
  DetectionMAPEvaluator()
      : evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {}

  virtual void start() {
    Evaluator::start();
    allTruePos_.clear();
    allFalsePos_.clear();
    numPos_.clear();
  }

  virtual real evalImp(std::vector<Argument>& arguments) {
    overlapThreshold_ = config_.overlap_threshold();
    backgroundId_ = config_.background_id();
    evaluateDifficult_ = config_.evaluate_difficult();
    apType_ = config_.ap_type();

    MatrixPtr detectTmpValue = arguments[0].value;
    Matrix::resizeOrCreate(cpuOutput_,
                           detectTmpValue->getHeight(),
                           detectTmpValue->getWidth(),
                           false,
                           false);

    MatrixPtr labelTmpValue = arguments[1].value;
    Matrix::resizeOrCreate(cpuLabel_,
                           labelTmpValue->getHeight(),
                           labelTmpValue->getWidth(),
                           false,
                           false);

    cpuOutput_->copyFrom(*detectTmpValue);
    cpuLabel_->copyFrom(*labelTmpValue);

    Argument label = arguments[1];
    const int* labelIndex = label.sequenceStartPositions->getData(false);
    size_t batchSize = label.getNumSequences();

    vector<map<size_t, vector<NormalizedBBox>>> allGTBBoxes;
    vector<map<size_t, vector<pair<real, NormalizedBBox>>>> allDetectBBoxes;

    for (size_t n = 0; n < batchSize; ++n) {
      map<size_t, vector<NormalizedBBox>> bboxes;
      for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) {
        vector<NormalizedBBox> bbox;
        getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox);
        int c = cpuLabel_->getData()[i * 6];
        bboxes[c].push_back(bbox[0]);
      }
      allGTBBoxes.push_back(bboxes);
    }

    size_t imgId = 0;
    for (size_t n = 0; n < cpuOutput_->getHeight();) {
      map<size_t, vector<pair<real, NormalizedBBox>>> bboxes;
      while (cpuOutput_->getData()[n * 7] == imgId &&
             n < cpuOutput_->getHeight()) {
        vector<real> label;
        vector<real> score;
        vector<NormalizedBBox> bbox;
        getBBoxFromDetectData(
            cpuOutput_->getData() + n * 7, 1, label, score, bbox);
        bboxes[label[0]].push_back(make_pair(score[0], bbox[0]));
        ++n;
      }
      ++imgId;
      if (imgId > batchSize) break;
      allDetectBBoxes.push_back(bboxes);
    }

    for (size_t n = 0; n < batchSize; ++n) {
      for (map<size_t, vector<NormalizedBBox>>::iterator it =
               allGTBBoxes[n].begin();
           it != allGTBBoxes[n].end();
           ++it) {
        size_t count = 0;
        if (evaluateDifficult_) {
          count = it->second.size();
        } else {
          for (size_t i = 0; i < it->second.size(); ++i)
            if (!(it->second[i].isDifficult)) ++count;
        }
        if (numPos_.find(it->first) == numPos_.end() && count != 0) {
          numPos_[it->first] = count;
        } else {
          numPos_[it->first] += count;
        }
      }
    }

    // calcTFPos
    calcTFPos(
        batchSize, allGTBBoxes, allDetectBBoxes, &allTruePos_, &allFalsePos_);

    return 0;
  }

  virtual void printStats(std::ostream& os) const {
    real mAP = calcMAP();
    os << "Detection mAP=" << mAP * 100;
  }

  virtual void distributeEval(ParameterClient2* client) {
    LOG(FATAL) << "Distribute detection evaluation not implemented.";
  }

protected:
  void calcTFPos(const size_t batchSize,
                 const vector<map<size_t, vector<NormalizedBBox>>>& allGTBBoxes,
                 const vector<map<size_t, vector<pair<real, NormalizedBBox>>>>&
                     allDetectBBoxes,
                 map<size_t, vector<pair<real, size_t>>>* allTruePos,
                 map<size_t, vector<pair<real, size_t>>>* allFalsePos) {
    for (size_t n = 0; n < allDetectBBoxes.size(); ++n) {
      if (allGTBBoxes[n].size() == 0) {
        for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
                 it = allDetectBBoxes[n].begin();
             it != allDetectBBoxes[n].end();
             ++it) {
          size_t label = it->first;
          for (size_t i = 0; i < it->second.size(); ++i) {
            (*allTruePos)[label].push_back(make_pair(it->second[i].first, 0));
            (*allFalsePos)[label].push_back(make_pair(it->second[i].first, 1));
          }
        }
      } else {
        for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
                 it = allDetectBBoxes[n].begin();
             it != allDetectBBoxes[n].end();
             ++it) {
          size_t label = it->first;
          vector<pair<real, NormalizedBBox>> predBBoxes = it->second;
          if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) {
            for (size_t i = 0; i < predBBoxes.size(); ++i) {
              (*allTruePos)[label].push_back(make_pair(predBBoxes[i].first, 0));
              (*allFalsePos)[label].push_back(
                  make_pair(predBBoxes[i].first, 1));
            }
          } else {
            vector<NormalizedBBox> gtBBoxes =
                allGTBBoxes[n].find(label)->second;
            vector<bool> visited(gtBBoxes.size(), false);
            // Sort detections in descend order based on scores
            std::sort(predBBoxes.begin(),
                      predBBoxes.end(),
                      sortScorePairDescend<NormalizedBBox>);
            for (size_t i = 0; i < predBBoxes.size(); ++i) {
              real maxOverlap = -1.0;
              size_t maxIdx = 0;
              for (size_t j = 0; j < gtBBoxes.size(); ++j) {
                real overlap =
                    jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]);
                if (overlap > maxOverlap) {
                  maxOverlap = overlap;
                  maxIdx = j;
                }
              }
              if (maxOverlap > overlapThreshold_) {
                if (evaluateDifficult_ ||
                    (!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) {
                  if (!visited[maxIdx]) {
                    (*allTruePos)[label].push_back(
                        make_pair(predBBoxes[i].first, 1));
                    (*allFalsePos)[label].push_back(
                        make_pair(predBBoxes[i].first, 0));
                    visited[maxIdx] = true;
                  } else {
                    (*allTruePos)[label].push_back(
                        make_pair(predBBoxes[i].first, 0));
                    (*allFalsePos)[label].push_back(
                        make_pair(predBBoxes[i].first, 1));
                  }
                }
              } else {
                (*allTruePos)[label].push_back(
                    make_pair(predBBoxes[i].first, 0));
                (*allFalsePos)[label].push_back(
                    make_pair(predBBoxes[i].first, 1));
              }
            }
          }
        }
      }
    }
  }

  real calcMAP() const {
    real mAP = 0.0;
    size_t count = 0;
    for (map<size_t, size_t>::const_iterator it = numPos_.begin();
         it != numPos_.end();
         ++it) {
      size_t label = it->first;
      size_t labelNumPos = it->second;
      if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end())
        continue;
      vector<pair<real, size_t>> labelTruePos = allTruePos_.find(label)->second;
      vector<pair<real, size_t>> labelFalsePos =
          allFalsePos_.find(label)->second;
      // Compute average precision.
      vector<size_t> tpCumSum;
      getAccumulation(labelTruePos, &tpCumSum);
      vector<size_t> fpCumSum;
      getAccumulation(labelFalsePos, &fpCumSum);
      std::vector<real> precision, recall;
      size_t num = tpCumSum.size();
      // Compute Precision.
      for (size_t i = 0; i < num; ++i) {
        CHECK_LE(tpCumSum[i], labelNumPos);
        precision.push_back(static_cast<real>(tpCumSum[i]) /
                            static_cast<real>(tpCumSum[i] + fpCumSum[i]));
        recall.push_back(static_cast<real>(tpCumSum[i]) / labelNumPos);
      }
      // VOC2007 style
      if (apType_ == "11point") {
        vector<real> maxPrecisions(11, 0.0);
        int startIdx = num - 1;
        for (int j = 10; j >= 0; --j)
          for (int i = startIdx; i >= 0; --i) {
            if (recall[i] < j / 10.) {
              startIdx = i;
              if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j];
              break;
            } else {
              if (maxPrecisions[j] < precision[i])
                maxPrecisions[j] = precision[i];
            }
          }
        for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11;
        ++count;
      } else if (apType_ == "Integral") {
        // Nature integral
        real averagePrecisions = 0.;
        real prevRecall = 0.;
        for (size_t i = 0; i < num; ++i) {
          if (fabs(recall[i] - prevRecall) > 1e-6)
            averagePrecisions += precision[i] * fabs(recall[i] - prevRecall);
          prevRecall = recall[i];
        }
        mAP += averagePrecisions;
        ++count;
      } else {
        LOG(FATAL) << "Unkown ap version: " << apType_;
      }
    }
    if (count != 0) mAP /= count;
    return mAP;
  }

  void getAccumulation(vector<pair<real, size_t>> inPairs,
                       vector<size_t>* accuVec) const {
    std::stable_sort(
        inPairs.begin(), inPairs.end(), sortScorePairDescend<size_t>);
    accuVec->clear();
    size_t sum = 0;
    for (size_t i = 0; i < inPairs.size(); ++i) {
      sum += inPairs[i].second;
      accuVec->push_back(sum);
    }
  }

  std::string getTypeImpl() const { return "detection_map"; }

  real getValueImpl() const { return calcMAP() * 100; }

private:
  real overlapThreshold_;
  bool evaluateDifficult_;
  size_t backgroundId_;
  std::string apType_;

  MatrixPtr cpuOutput_;
  MatrixPtr cpuLabel_;

  map<size_t, size_t> numPos_;
  map<size_t, vector<pair<real, size_t>>> allTruePos_;
  map<size_t, vector<pair<real, size_t>>> allFalsePos_;
};

REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator);

}  // namespace paddle