attention_lstm_op.cc 19.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/platform/cpu_info.h"
18
#include "paddle/phi/kernels/funcs/blas/blas.h"
F
Feiyu Chan 已提交
19
#include "paddle/phi/kernels/funcs/cpu_vec.h"
20
#include "paddle/phi/kernels/funcs/fc_functor.h"
21

T
tensor-tang 已提交
22 23 24
namespace paddle {
namespace operators {

25
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
26 27 28 29 30 31 32 33
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("LSTMWeight"), "Input", "LSTMWeight",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("LSTMBias"), "Input", "LSTMBias",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasInput("AttentionWeight"), "Input", "AttentionWeight",
                 "AttentionLstm");
T
tensor-tang 已提交
34

35 36 37 38 39 40 41 42 43
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("AttentionedX"), "Output", "AttentionedX",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("AttentionFCOut"), "Output", "AttentionFCOut",
                 "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("LSTMX"), "Output", "LSTMX", "AttentionLstm");
  OP_INOUT_CHECK(ctx->HasOutput("LSTMOUT"), "Output", "LSTMOUT",
                 "AttentionLstm");
T
tensor-tang 已提交
44 45

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
46
  const int M = x_dims[1];
47 48 49 50
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "Expected input(X)'s dimension is 2. But received %d.",
                        x_dims.size()));
T
tensor-tang 已提交
51

T
tensor-tang 已提交
52 53
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
54 55
  PADDLE_ENFORCE_EQ(
      w_dims.size(), 2,
56 57 58
      platform::errors::InvalidArgument(
          "Expected input(LSTMWeight)'s dimension is 2.But received %d.",
          w_dims.size()));
59 60 61 62
  PADDLE_ENFORCE_EQ(
      w_dims[0], D + M,
      platform::errors::InvalidArgument(
          "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D));
T
tensor-tang 已提交
63 64

  auto b_dims = ctx->GetInputDim("LSTMBias");
65 66 67 68 69 70 71 72
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, platform::errors::InvalidArgument(
                                          "Input(LSTMBias)'s rank must be 2."));
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D,
                    platform::errors::InvalidArgument(
                        "LSTMBias dims should be 1 x %d.", 4 * D));
T
tensor-tang 已提交
73 74

  auto c_dims = ctx->GetInputDim("C0");
75 76
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, platform::errors::InvalidArgument(
                                          "Input(C0)'s rank must be 2."));
T
tensor-tang 已提交
77
  if (ctx->IsRuntime()) {
78 79
    PADDLE_ENFORCE_EQ(c_dims[1], D, platform::errors::InvalidArgument(
                                        "C0 dims should be N x %d.", D));
T
tensor-tang 已提交
80 81
  }

82
  if (ctx->HasInput("H0")) {
T
tensor-tang 已提交
83
    auto h_dims = ctx->GetInputDim("H0");
84 85 86 87 88
    PADDLE_ENFORCE_EQ(
        h_dims.size(), 2UL,
        platform::errors::InvalidArgument(
            "Expected input(H0)'s dimension is 2. But received %d.",
            h_dims.size()));
T
update  
tensor-tang 已提交
89
    if (ctx->IsRuntime() ||
90
        (phi::product(c_dims) > 0 && phi::product(h_dims) > 0)) {
91 92 93 94
      PADDLE_ENFORCE_EQ(h_dims, c_dims,
                        platform::errors::InvalidArgument(
                            "The dimension of Input(H0) and Input(C0) "
                            "should be the same."));
T
update  
tensor-tang 已提交
95
    }
T
tensor-tang 已提交
96 97
  }

T
tensor-tang 已提交
98 99
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
100 101
                    platform::errors::InvalidArgument(
                        "Input(AttentionWeight)'s rank must be 2."));
T
update  
tensor-tang 已提交
102
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
103
                    platform::errors::InvalidArgument(
104 105 106
                        "Expected `AttentionWeight` shape is [(%d + %d), 1]. "
                        "But received shape = [%d, 1], shape[0] is not %d.",
                        M, D, atten_w_dims[0], M + D));
T
update  
tensor-tang 已提交
107
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
108 109
                    platform::errors::InvalidArgument(
                        "AttentionWeight shapes must be (%d + %d) * 1.", M, D));
T
tensor-tang 已提交
110

111
  if (ctx->HasInput("AttentionBias")) {
T
tensor-tang 已提交
112 113
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
114 115
                      platform::errors::InvalidArgument(
                          "Input(AttentionBias)'s rank must be 2."));
T
update  
tensor-tang 已提交
116
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
117 118
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
T
update  
tensor-tang 已提交
119
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
120 121
                      platform::errors::InvalidArgument(
                          "AttentionBias shapes must be 1 * 1."));
T
tensor-tang 已提交
122 123
  }

124
  if (ctx->HasInput("AttentionScalar")) {
T
tensor-tang 已提交
125 126
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
127 128 129 130 131 132
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalar)'s rank must be 2."));
    PADDLE_ENFORCE_EQ(dims[0], 1, platform::errors::InvalidArgument(
                                      "AttentionScalar shapes must be 1 * 1."));
    PADDLE_ENFORCE_EQ(dims[1], 1, platform::errors::InvalidArgument(
                                      "AttentionScalar shapes must be 1 * 1."));
T
tensor-tang 已提交
133 134
  }

135
  if (ctx->HasInput("AttentionScalarBias")) {
T
tensor-tang 已提交
136
    auto dims = ctx->GetInputDim("AttentionScalarBias");
137 138
    OP_INOUT_CHECK(ctx->HasInput("AttentionScalar"), "Input", "AttentionScalar",
                   "AttentionLstm");
T
tensor-tang 已提交
139
    PADDLE_ENFORCE_EQ(dims.size(), 2,
140 141 142 143 144 145 146 147
                      platform::errors::InvalidArgument(
                          "Input(AttentionScalarBias)'s rank must be 2."));
    PADDLE_ENFORCE_EQ(dims[0], 1,
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
    PADDLE_ENFORCE_EQ(dims[1], 1,
                      platform::errors::InvalidArgument(
                          "AttentionScalarBias shapes must be 1 * 1."));
T
tensor-tang 已提交
148 149 150
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
151 152
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
153 154 155 156
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
157 158 159 160
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

161
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
162
    const framework::ExecutionContext& ctx) const {
163 164
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context());
T
tensor-tang 已提交
165 166
}

167
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
168 169 170 171 172
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
173 174 175 176 177
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
178
  AddInput("H0",
179 180 181
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
182
      .AsDispensable();
183 184 185 186
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
187 188
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
189 190 191 192 193 194 195 196 197 198
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
199
      .AsDispensable();
200 201 202 203 204 205 206 207 208 209
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
210 211 212 213 214 215
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
216 217 218 219
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
220
      .AsIntermediate();
221 222
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
223
      .AsIntermediate();
224 225 226 227 228 229 230 231 232
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
233 234 235 236 237
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
238
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
239 240
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
241
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
242
      .SetDefault("tanh")
243
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
244 245 246 247 248
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
249
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
250
  AddComment(R"DOC(
251 252 253 254 255 256 257 258 259 260 261 262 263 264
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
265 266 267
)DOC");
}

268 269 270 271
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
F
Feiyu Chan 已提交
272 273
    phi::funcs::vec_add_bias<T, platform::avx>(n, *bias, x, y);
    phi::funcs::vec_relu<T, platform::avx>(n, y, y);
274
  } else {
F
Feiyu Chan 已提交
275
    phi::funcs::vec_relu<T, platform::avx>(n, x, y);
276 277 278
  }
}

T
tensor-tang 已提交
279 280
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
281 282 283 284 285
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
F
Feiyu Chan 已提交
286 287
  phi::funcs::vec_add_bias<T, platform::avx>(n, -scalar, x, y);  // sub
  phi::funcs::vec_exp<T>(n, y, y);                               // exp
288 289 290 291 292
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
F
Feiyu Chan 已提交
293
  phi::funcs::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
294 295
}

T
tensor-tang 已提交
296
template <typename T>
297
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
298 299
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
300
    using DeviceContext = paddle::platform::CPUDeviceContext;
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
318 319 320 321 322

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
323 324 325 326
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
327 328 329 330 331 332 333 334
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
335 336 337 338 339
    PADDLE_ENFORCE_EQ(x_lod.size(), 1UL, platform::errors::InvalidArgument(
                                             "Input(X)'s lod size must be 1."));
    PADDLE_ENFORCE_EQ(
        c0->dims()[0], N,
        platform::errors::InvalidArgument("C0 dims should be %d x %d.", N, D));
T
tensor-tang 已提交
340
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
341

342
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
343 344 345
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
T
tensor-tang 已提交
346
    if (platform::MayIUse(platform::avx)) {
F
Feiyu Chan 已提交
347
      phi::funcs::VecActivations<T, platform::avx> act_functor;
T
tensor-tang 已提交
348 349 350 351
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
F
Feiyu Chan 已提交
352
      phi::funcs::VecActivations<T, platform::isa_any> act_functor;
T
tensor-tang 已提交
353 354 355 356
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
357

T
tensor-tang 已提交
358
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
359
    const T* h0_data = h0 ? h0->data<T>() : NULL;
360 361 362 363 364 365 366 367 368
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
369 370 371 372 373 374
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
375

376
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(ctx);
377

378
    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
379
    auto& dev_ctx = ctx.template device_context<platform::CPUDeviceContext>();
380
    phi::funcs::FCFunctor<DeviceContext, T> fc;
381 382
    fc(dev_ctx, total_T, 1, M, x_data, atten_w_data, atted_x_data,
       atten_b_data);
383

T
tensor-tang 已提交
384
    const T* cur_atten_x_data = atted_x_data;
385 386 387 388 389
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
390
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
391
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
392
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
393
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
394
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
395 396
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
397
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
398 399 400
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
401
        if (atten_scalar_data) {
T
tensor-tang 已提交
402
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
403 404 405
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
406
        // 1d. softmax
T
tensor-tang 已提交
407
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
408
        // mul x(seq_len*M) and sum pool
409
        fc(dev_ctx, 1, M, seq_len, fc_out_data, cur_x_data, lstm_x_data);
410

T
tensor-tang 已提交
411
        /// 2. compute LSTM step
412 413 414 415 416 417 418 419 420 421 422 423 424
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
425
        act_gate(D3, lstm_out_data, lstm_out_data);
426
        // candicate act: tanh
427
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
428 429 430 431 432

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
433
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
434 435 436 437 438

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
439
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
440
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
441

T
tensor-tang 已提交
442
        prev_hidden_data = cur_hidden_out_data;
443 444 445
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
446
      }
447
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
448
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
449 450 451 452 453 454 455 456
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
457
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
458
                  ops::AttentionLSTMOpMaker);
T
tensor-tang 已提交
459

T
tensor-tang 已提交
460 461
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);