softmax_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16 17 18

#include <string>

K
Kexin Zhao 已提交
19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29
namespace paddle {
namespace operators {

D
dongzhihong 已提交
30
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31 32 33
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
35 36
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
37 38
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
39

40 41 42 43 44 45 46
    auto dim_x = ctx->GetInputDim("X");
    auto rank_x = dim_x.size();
    auto axis = ctx->Attrs().Get<int>("axis");
    PADDLE_ENFORCE(axis >= -1 && axis < rank_x,
                   "Attr(axis) value should larger equal then -1"
                   "and less then the rank of Input(X)");

F
fengjiayi 已提交
47
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
Q
Qiao Longfei 已提交
48
    ctx->ShareLoD("X", /*->*/ "Out");
49
  }
50 51 52 53 54

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
55
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
56 57 58
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

59
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
60
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
61
      library_ = framework::LibraryType::kCUDNN;
62 63
    }
#endif
64 65 66 67
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
68
      layout_ = framework::DataLayout::kMKLDNN;
69 70
    }
#endif
K
Kexin Zhao 已提交
71

Y
Yu Yang 已提交
72
    auto input_data_type = ctx.Input<Tensor>("X")->type();
K
Kexin Zhao 已提交
73
    if (input_data_type == framework::proto::VarType::FP16) {
74 75
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
K
Kexin Zhao 已提交
76 77
    }

M
mozga-intel 已提交
78
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
79
                                   library_);
80
  }
81
};
82

D
dongzhihong 已提交
83
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
84
 public:
Y
Yu Yang 已提交
85
  void Make() override {
86
    AddInput("X",
F
fengjiayi 已提交
87
             "The input tensor of softmax, "
D
dengkaipeng 已提交
88
             "whose :attr:`axis` dimension is the input_feature_dimensions.");
89
    AddOutput("Out", "The normalized values with the same shape as X.");
90
    AddAttr<int>("axis",
D
dengkaipeng 已提交
91
                 "The dimension index of Input(x) to perform softmax,"
92 93
                 "default -1 for last dimension")
        .SetDefault(-1);
94 95 96 97 98 99 100 101 102 103 104
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
105 106 107
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
108
    AddAttr<bool>("is_test",
109 110
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
J
Jacek Czaja 已提交
111
        .SetDefault(false);
C
caoying03 已提交
112
    AddComment(R"DOC(
113 114
Softmax Operator.

115
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
116
has the same shape as the input.
C
caoying03 已提交
117

D
dengkaipeng 已提交
118 119 120
The :attr:`axis` th dimension of the input tensor will be permuted to the last.
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
second dimension(row length) is as same as the :attr:`axis` dimension of the input
121 122 123
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
124
of the input tensor's :attr:`axis` dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
125
K-dimensional vector of real values in the range [0, 1] that add up to 1.
126 127 128 129 130
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
131

F
fengjiayi 已提交
132
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
133
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
134 135

)DOC");
136 137 138
  }
};

C
chengduo 已提交
139 140 141 142 143 144 145 146
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
147
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
148 149 150
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

151
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
152 153 154 155 156 157
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
158

159 160
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
D
dongzhihong 已提交
161
  }
162 163 164 165 166

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
167
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
168 169
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
M
mozga-intel 已提交
170

171
#ifdef PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
172
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
173
      library_ = framework::LibraryType::kCUDNN;
174 175
    }
#endif
J
Jacek Czaja 已提交
176 177 178 179 180 181 182
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
Y
Yu Yang 已提交
183 184
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
J
Jacek Czaja 已提交
185 186 187 188 189 190 191
    if (input_data_type == framework::proto::VarType::FP16) {
      PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                     "float16 can only be used on GPU place");
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
192
  }
D
dongzhihong 已提交
193 194
};

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
class SoftmaxOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("softmax_grad");

    op->SetInput("Out", Output("Out"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};
D
dzhwinter 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

class SoftmaxInplaceInToOut : public framework::InplaceInToOut {
 public:
  using framework::InplaceInToOut::InplaceInToOut;

 protected:
  std::unordered_map<std::string, std::string> Apply(
      const framework::OpDesc& op_desc,
      framework::BlockDesc* block) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"},
    };
  }
};

228 229 230
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
231
namespace ops = paddle::operators;
D
dongzhihong 已提交
232

Y
Yang Yang 已提交
233
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
C
chengduo 已提交
234
                  ops::SoftmaxOpInferVarType, ops::SoftmaxOpGradMaker);
235
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad);
D
dongzhihong 已提交
236
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
237 238
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
239 240
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
D
dzhwinter 已提交
241 242
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, double>);