optimizer.py 318.5 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23 24 25 26 27 28 29 30
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
31

32 33
from . import framework
from . import layers
34
from . import unique_name
35 36 37 38 39 40 41 42 43 44 45 46 47
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
from .clip import (
    GradientClipBase,
    GradientClipByNorm,
    error_clip_callback,
    append_gradient_clip_ops,
    ClipGradByGlobalNorm,
)
48 49 50
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
51
from .dygraph import base as imperative_base
52
from .dygraph import no_grad
53 54 55 56
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
57 58 59
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
60
from functools import cmp_to_key
61
from .wrapped_decorator import signature_safe_contextmanager
62
import warnings
63
from paddle import _C_ops, _legacy_C_ops
64 65 66 67 68
from ..fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _current_expected_place,
)
69

70
__all__ = [
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
98
]
Q
Qiao Longfei 已提交
99 100


101
class Optimizer:
Q
Qiao Longfei 已提交
102 103 104
    """Optimizer Base class.

    Define the common interface of an optimizer.
105 106
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
107 108
    """

109
    @imperative_base.no_grad
110 111 112 113 114 115 116 117 118 119
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
120 121
        """
        Args:
122 123
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
124 125
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
126
        # Because of the loop import, so place it in the function body
127
        from paddle.optimizer.lr import LRScheduler
128 129 130 131

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
132
        self._name = name
J
Jiabin Yang 已提交
133
        if framework._non_static_mode():
134 135 136
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
137
                raise TypeError(
138
                    "learning rate should be float or LRScheduler, got %s here"
139 140
                    % type(learning_rate)
                )
141
            if self._parameter_list is None:
142 143 144
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
145 146 147 148 149 150
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
151 152
                            % regularization.__str__()
                        )
153
                        break
M
minqiyang 已提交
154
        else:
155 156 157
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
158
                raise TypeError(
159
                    "learning rate should be float or LRScheduler, got %s here"
160 161
                    % type(learning_rate)
                )
M
minqiyang 已提交
162

163 164 165 166 167
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
168
        self.regularization = regularization
169
        self._grad_clip = grad_clip
170
        self._learning_rate = learning_rate
171 172
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
173

D
dzhwinter 已提交
174
        self._dtype = None
L
Leo Chen 已提交
175 176 177 178
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

179
        # each program should have a independent learning rate
180
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
181
        self._learning_rate_map = dict()
182
        if isinstance(self._learning_rate, framework.Variable):
183
            self._learning_rate_map[
184 185
                framework.default_main_program()
            ] = self._learning_rate
186 187 188 189 190
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
191 192
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
193
        self.helper = LayerHelper(self.__class__.__name__)
194
        self._opti_name_list = []
H
hong 已提交
195
        self._accumulators_holder = {}
196
        self._param_device_map = dict()
197 198
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
199
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
200 201
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
202 203 204 205

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
206 207
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
208 209 210

        Args: None
        Return:
T
tianshuo78520a 已提交
211
            state_dict(dict) : dict contains all the variable used by optimizer
212

H
hong 已提交
213 214 215 216
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
217 218 219 220 221 222

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
223 224

        '''
225
        from paddle.optimizer.lr import LRScheduler
226

H
hong 已提交
227 228 229 230
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
231 232
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
233
        # global step if use lr decay
234
        if isinstance(self._learning_rate, LRScheduler):
235 236
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
237
        if isinstance(self._learning_rate, LearningRateDecay):
238 239 240 241
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
242 243 244
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
245

246 247 248
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
249

250
                state_dict['global_step'] = var_temp
H
hong 已提交
251 252 253
        return state_dict

    @framework.dygraph_only
254
    def set_state_dict(self, state_dict):
H
hong 已提交
255
        '''
T
tianshuo78520a 已提交
256
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
257

258
        Args:
H
hong 已提交
259 260 261
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
262

H
hong 已提交
263 264
        Examples:
            .. code-block:: python
265

266 267
                import paddle
                import paddle.fluid as fluid
268 269 270

                paddle.disable_static()

271
                emb = paddle.nn.Embedding(10, 10)
272

273
                state_dict = emb.state_dict()
274
                fluid.save_dygraph(state_dict, "paddle_dy")
275

276
                scheduler = paddle.optimizer.lr.NoamDecay(
277 278 279 280
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
281
                state_dict = adam.state_dict()
282
                fluid.save_dygraph(state_dict, "paddle_dy")
283

284
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
285
        '''
286
        from paddle.optimizer.lr import LRScheduler
287

288
        if isinstance(self._learning_rate, LRScheduler):
289
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
290 291

        if isinstance(self._learning_rate, LearningRateDecay):
292 293 294
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
295 296 297
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
298 299 300 301 302
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
303 304 305 306 307
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
308 309 310

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
311 312 313 314 315
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
316 317 318 319
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
320 321
                        type(global_step),
                    )
H
hong 已提交
322

323 324 325 326 327 328 329 330 331 332 333 334
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
335 336 337
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
338

339 340 341 342 343
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
344

345 346 347 348 349
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
350 351 352

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
353 354 355
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
356 357 358
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
359
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
360

361
        for k, v in self._global_accumulators.items():
362 363 364
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
365
            _load_state_para(state_dict, v)
366

367 368 369
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

370 371
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
372

373 374 375 376 377 378 379 380 381
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
382
    def _create_global_learning_rate(self):
383
        from paddle.optimizer.lr import LRScheduler
384

385
        if isinstance(self._learning_rate, LRScheduler):
386 387 388 389 390 391 392 393 394 395
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
396 397
                    dtype='float32' if self._dtype is None else self._dtype,
                )
398 399 400
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
401
                self._learning_rate_map[
402 403
                    framework.default_main_program()
                ] = lr_var
404 405 406

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
407 408
                lr_var, initializer=Constant(value=lr_value)
            )
409 410
            return

411 412 413
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
414 415 416 417 418
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
419 420 421
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = layers.create_global_var(
M
minqiyang 已提交
422 423 424 425
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
426 427
                        persistable=True,
                    )
428
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
429
            elif isinstance(self._learning_rate, LearningRateDecay):
430
                self._learning_rate_map[
431 432
                    framework.default_main_program()
                ] = self._learning_rate()
433
            else:
Q
qiaolongfei 已提交
434
                raise TypeError(
435 436
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
437
        else:
438 439 440 441
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
442 443 444 445 446 447
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
448

449
            # create learning rate in the current main program
450
            self._learning_rate_map[
451 452 453 454 455 456 457 458
                framework.default_main_program()
            ] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
459

460 461 462 463
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
464

465 466 467 468 469 470 471 472
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
473

474 475 476 477
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
478

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
513 514
                % (type(value))
            )
515 516 517 518 519 520 521 522
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
523 524
                if in_dygraph_mode():
                    place = _current_expected_place()
525 526 527 528 529 530 531
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
532 533

                elif _in_legacy_dygraph():
534 535 536 537 538 539 540 541 542
                    _legacy_C_ops.fill_constant(
                        current_lr,
                        'value',
                        float(value),
                        'dtype',
                        current_lr.dtype,
                        'shape',
                        list(current_lr.shape),
                    )
543
                else:
544 545 546 547 548 549 550 551 552 553 554 555 556
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
557
        else:
558 559 560
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
561 562
            self._learning_rate_map[framework.default_main_program()] = value

563 564 565
    @framework.dygraph_only
    def current_step_lr(self):
        """
566
        :api_attr: imperative
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
612
        if isinstance(current_lr, framework.Variable):
613 614 615 616
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
617 618 619
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
620 621 622 623 624 625 626
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
627
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
628 629 630 631
        """
        get global decayed learning rate
        :return:
        """
632 633
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
634
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
635

Q
Qiao Longfei 已提交
636
    def _append_optimize_op(self, block, param_and_grad):
637
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
638 639
        raise NotImplementedError()

640 641 642 643
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
644 645
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
646
        else:
W
Wu Yi 已提交
647
            if param_lr == 1.0:
Y
yuyang18 已提交
648
                return self._global_learning_rate()
W
Wu Yi 已提交
649
            else:
X
Xin Pan 已提交
650
                with default_main_program()._lr_schedule_guard(
651 652
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
653
                    return self._global_learning_rate() * param_lr
654 655 656 657 658 659 660

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
661
        """
662 663
        pass

664
    def _finish_update(self, block, parameters_and_grads):
665 666 667 668 669 670 671 672
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
673
            None
674 675 676
        """
        pass

677 678 679 680 681 682 683 684 685 686
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
687 688 689 690 691 692 693 694 695
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
696 697
        if self._name is not None:
            name = self._name + "_" + name
698 699 700 701
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
702
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
703
                return self._accumulators[name][param.name]
704 705
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
706 707 708
                    name, param.name
                )
            )
709
        if shape is None:
710
            shape = param.shape
Q
Qiao Longfei 已提交
711
        assert isinstance(self.helper, LayerHelper)
712 713 714 715 716

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
717
        var = self.helper.create_global_variable(
718
            name=var_name,
Q
Qiao Longfei 已提交
719
            persistable=True,
F
fengjiayi 已提交
720
            dtype=dtype or param.dtype,
721
            type=core.VarDesc.VarType.LOD_TENSOR
722 723
            if framework._non_static_mode()
            else (param.type if type is None else type),
H
hong 已提交
724
            shape=shape,
725 726
            belong_to_optimizer=True,
        )
727 728 729 730
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
731 732
                var, initializer=Constant(value=float(fill_value))
            )
H
hong 已提交
733

J
Jiabin Yang 已提交
734
        if framework._non_static_mode():
H
hong 已提交
735
            if len(self._accumulators_holder) > 0:
736 737 738 739 740
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
741 742
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
743
        self._accumulators[name][param.name] = var
744
        return var
745

746 747 748 749 750 751 752 753 754
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
755 756 757 758 759 760 761 762 763 764 765 766 767
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
768
        if name in self._global_accumulators:
J
Jiabin Yang 已提交
769
            if framework._non_static_mode():
770 771
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
772
        if shape is None:
773 774 775 776 777 778 779 780 781 782 783 784 785
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
786 787
            belong_to_optimizer=True,
        )
788 789 790 791
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
792 793
                var, initializer=Constant(value=float(fill_value))
            )
794

J
Jiabin Yang 已提交
795
        if framework._non_static_mode():
796
            if len(self._accumulators_holder) > 0:
797 798 799 800 801
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
802 803 804 805 806
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

807 808 809 810 811 812 813 814
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
815
            accumulator variable
816
        """
W
whs 已提交
817 818
        if self._name is not None:
            name = self._name + "_" + name
819 820 821 822
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
823 824
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
825 826 827
                    name, param.name
                )
            )
828 829
        return self._accumulators[name][param.name]

830 831 832 833 834 835 836 837 838 839 840
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
841
        if name not in self._global_accumulators:
842 843 844
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

845 846 847 848 849
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
850 851
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
852 853 854 855 856
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
857 858
                            device_attr_name
                        )
859
                        break
860 861 862 863 864 865 866

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

867
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
868 869 870
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
871
          parameters_and_grads(list(tuple(Variable, Variable))):
872
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
873 874

        Returns:
875
          return_op_list: a list of operators that will complete one step of
876 877 878
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
879
        """
880 881 882 883 884
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
885
        # for parameters and extend _finish_update method to add custom ops.
886

887
        # Allways called under program_guard use global block as loss block
888 889 890
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

891
        global_block = framework.default_main_program().global_block()
892 893 894
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
895 896 897
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
898
            target_block = framework.default_main_program().blocks[
899 900
                current_block.backward_block_idx
            ]
901 902

        start = len(target_block.ops)
903

904
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
905
        self._create_accumulators(
906 907
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
908 909
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
910
        if framework._non_static_mode():
911 912 913
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
914 915
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
916 917 918 919 920
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
921 922
                    param_and_grad
                ), name_scope("optimizer"):
923
                    if param_and_grad[0].trainable is True:
924
                        device = self._get_device_for_param(
925 926
                            param_and_grad[0].name
                        )
927 928
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
929 930
                                target_block, param_and_grad
                            )
931 932 933

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
934
        self._finish_update(target_block, parameters_and_grads)
935

936 937
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
938 939

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
940 941 942 943 944 945 946 947 948
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
949 950
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
951 952 953 954 955 956 957 958
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
959 960
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
961 962 963 964 965 966
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
967
            param_and_grad = [table_param, table_grad]
968 969 970
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
971 972 973 974 975 976 977
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
978
                        "LearningRate": self._create_param_lr(param_and_grad),
979
                    },
980 981
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
982 983
        return new_param_grads, (table_param, table_grad), sgd_op

984 985 986 987 988 989 990 991
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
992
        """
993
        The first part of ``minimize``, do auto-diff to append backward operations for
994 995 996
        the current program.

        Args:
997 998 999 1000
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1001
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1002 1003
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1004
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1005 1006 1007
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1008

1009
        Return:
1010 1011
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1012

1013
        Examples:
1014
            See examples in ``apply_gradients``.
1015
        """
1016
        act_no_grad_set = None
J
Jiabin Yang 已提交
1017
        if framework._non_static_mode():
1018
            pass
L
Leo Chen 已提交
1019 1020
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1021

L
Leo Chen 已提交
1022 1023 1024 1025
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1026
        if framework._non_static_mode():
1027 1028 1029
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1030

C
chengduo 已提交
1031
            params_grads = []
1032
            for param in parameter_list:
C
chengduo 已提交
1033 1034
                if not param.trainable:
                    continue
1035
                if param._grad_ivar() is not None:
C
chengduo 已提交
1036
                    # create gradient variable
1037
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1038
                    params_grads.append((param, grad_var))
1039
        else:
C
chengduo 已提交
1040 1041 1042
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1043
                assert isinstance(callbacks, list)
C
chengduo 已提交
1044
            program = loss.block.program
1045 1046
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1047
                "Maybe that you should call paddle.mean to process the current loss.".format(
1048 1049 1050 1051 1052 1053
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1054
            with program_guard(program, startup_program):
1055 1056 1057
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1058
        return params_grads
1059

1060
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1061
        """Create and add backward regularization Operators
1062

1063 1064 1065
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1066
        if grad is None or (
1067 1068 1069 1070 1071 1072
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
1083
        if framework._non_static_mode():
1084
            return _legacy_C_ops.sum([grad, regularization_term])
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1097 1098
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1099 1100 1101

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1102
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1103 1104 1105

        return new_grad

1106 1107 1108
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1109
        r"""Create and add backward regularization Operators
1110

1111 1112 1113 1114
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1115

1116 1117 1118 1119 1120
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1121

1122 1123 1124
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1125

1126 1127 1128 1129
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1130
        if framework._non_static_mode():
1131
            for param, grad in parameters_and_grads:
1132
                new_grad = self._create_regularization_of_grad(
1133 1134
                    param, grad, regularization
                )
1135 1136 1137 1138 1139
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1140 1141 1142 1143 1144
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1145 1146 1147 1148
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1149 1150
                            % regularization.__str__()
                        )
1151 1152
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1153 1154
                            param, grad, regularization
                        )
1155 1156 1157
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1158 1159 1160 1161 1162 1163 1164
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1165 1166 1167 1168
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1169 1170
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1171 1172
                    "the regularizer is set".format(p.name)
                )
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1187 1188
            belong_to_optimizer=True,
        )
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1199 1200
            belong_to_optimizer=True,
        )
1201 1202

        with program_guard(default_main_program()):
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1232

1233
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1234
        # so the shape of flatten_param and flatten_grad will be inferred.
1235 1236 1237 1238 1239 1240
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0)
        )
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0)
        )
1241 1242 1243

        return [(flatten_param, flatten_grad)]

1244 1245 1246 1247 1248 1249 1250
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1251

1252 1253
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1254

1255 1256 1257
        Examples:
            .. code-block:: python

1258
                import paddle.fluid as fluid
1259 1260 1261 1262 1263 1264 1265 1266 1267
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1268 1269
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1270
            if self._grad_clip is None or isinstance(
1271 1272
                self._grad_clip, ClipGradByGlobalNorm
            ):
1273 1274
                params_grads = self.flatten_param_grads(params_grads)

1275
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1276 1277 1278 1279
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1280 1281

        # Add regularization if any
1282 1283 1284
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1285 1286 1287 1288

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1301
        if framework._non_static_mode():
1302 1303 1304 1305
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1306 1307
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1308
                params_grads = self.append_regularization_ops(
1309 1310
                    params_grads, self.regularization
                )
C
chengduo 已提交
1311 1312 1313 1314 1315 1316 1317
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1318
    def _get_no_grad_set(self, loss, no_grad_set=None):
1319
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1320 1321
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1322 1323
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1324 1325 1326 1327 1328
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1329 1330 1331 1332
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1333 1334

        If not, new gradient will accumulat on previous gradient.
1335

1336 1337
        Returns:
            None
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
1350
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1362
    @imperative_base.no_grad
1363 1364 1365
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1366
        """
1367
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1368

1369
        Args:
1370 1371 1372 1373
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1374
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1375 1376
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1377
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1378
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1379

1380
        Returns:
1381 1382 1383
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1384 1385
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1386
            ``fetch_list`` before run, see details in ``Executor``.
1387 1388 1389

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1390
        """
C
chengduo 已提交
1391
        assert isinstance(loss, Variable), "The loss should be an Variable."
1392

1393 1394 1395
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1396

1397 1398 1399 1400 1401 1402
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1403

1404 1405 1406
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1407

Q
Qiao Longfei 已提交
1408
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1409 1410 1411


class SGDOptimizer(Optimizer):
1412
    r"""
Q
qiaolongfei 已提交
1413 1414 1415 1416 1417 1418
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1419 1420 1421
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1422
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1423 1424
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1425 1426 1427 1428 1429
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1430 1431 1432
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1433
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1434 1435
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1436 1437 1438 1439

    Examples:
        .. code-block:: python

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1465 1466
    """

1467 1468 1469 1470 1471 1472 1473 1474 1475
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1476
        assert learning_rate is not None
1477
        super().__init__(
1478 1479 1480 1481 1482 1483
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1484
        self.type = "sgd"
1485
        self._use_mkldnn = False
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1497 1498 1499 1500 1501 1502 1503
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1504
            block = self.helper.startup_program.global_block()
1505 1506 1507 1508 1509 1510 1511 1512 1513
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1527 1528 1529 1530
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1531 1532 1533 1534
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1535

1536
    @no_grad
1537
    def _append_optimize_op(self, block, param_and_grad):
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1548

1549
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1550
        if in_dygraph_mode():
1551 1552 1553 1554 1555 1556 1557
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1558 1559
            return None
        if _in_legacy_dygraph():
1560 1561 1562 1563 1564 1565 1566 1567
            _legacy_C_ops.sgd(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                param_and_grad[0],
                master_weight,
            )
1568
            return None
1569

1570
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1571
        # create the optimize op
1572 1573 1574
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
1575
            "LearningRate": lr,
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1586 1587 1588 1589 1590 1591 1592
        sgd_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
Q
Qiao Longfei 已提交
1593 1594

        return sgd_op
1595 1596 1597


class MomentumOptimizer(Optimizer):
1598
    r"""
Q
qiaolongfei 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1612
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1613 1614 1615

        & else:

Q
qiaolongfei 已提交
1616
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1617

1618 1619 1620 1621
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1622
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1623 1624
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1625
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1626 1627 1628 1629 1630
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1631 1632 1633
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1634
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1635 1636
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1637 1638 1639 1640

    Examples:
        .. code-block:: python

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1666 1667 1668
    """
    _velocity_acc_str = "velocity"

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1679 1680
        assert learning_rate is not None
        assert momentum is not None
1681
        super().__init__(
1682 1683 1684 1685 1686 1687
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1688 1689
        self.type = "momentum"
        self._momentum = momentum
1690
        self._use_nesterov = bool(use_nesterov)
1691 1692 1693 1694 1695

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1696
            self._add_accumulator(self._velocity_acc_str, p)
1697 1698 1699 1700

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1701 1702 1703
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1704
        lr = self._create_param_lr(param_and_grad)
1705
        master_weight = None
J
Jiabin Yang 已提交
1706
        if framework._non_static_mode():
1707
            _, _, _ = _legacy_C_ops.momentum(
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1721
            return None
1722

1723
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1724 1725 1726 1727
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1728
            "LearningRate": [lr],
1729 1730 1731 1732
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
1733
            "VelocityOut": [velocity_acc],
1734
        }
1735
        # create the momentum optimize op
1736 1737 1738 1739 1740 1741 1742
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1743 1744

        return momentum_op
1745 1746


1747
class DGCMomentumOptimizer(Optimizer):
1748
    r"""
1749
	:api_attr: Static Graph
S
swtkiwi 已提交
1750

1751
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1752

G
gongweibao 已提交
1753
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1754 1755
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1756
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1757 1758 1759

    Eventually, these gradients become large enough to be transmitted.

1760
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1761

G
gongweibao 已提交
1762
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1763 1764 1765 1766

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1767

1768 1769
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1770

1771
        2. Call momentum to optimize the cost.
1772 1773

    Args:
1774 1775
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1776
        momentum (float): Momentum factor.
G
gongweibao 已提交
1777
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1778 1779 1780 1781 1782 1783 1784
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1785
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1786 1787
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1788
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1789 1790 1791 1792 1793
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1794 1795
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None,
1796
            meaning there is no gradient clipping.
1797 1798
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1799 1800 1801 1802

    Examples:
        .. code-block:: python

1803
            import paddle.fluid as fluid
1804
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1805 1806 1807 1808 1809
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1810 1811

    """
1812 1813
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    def __init__(
        self,
        learning_rate,
        momentum,
        rampup_begin_step,
        rampup_step=1,
        sparsity=[0.999],
        parameter_list=None,
        use_nesterov=False,
        num_trainers=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
J
Jiabin Yang 已提交
1829
        if framework._non_static_mode():
Z
zhongpu 已提交
1830
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1831

1832 1833 1834
        assert (
            core.is_compiled_with_cuda()
        ), "Paddle is not compiled with CUDA. DGC is only support GPU for now."
1835

1836 1837
        assert learning_rate is not None
        assert momentum is not None
1838
        super().__init__(
1839 1840 1841 1842 1843 1844
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1845 1846 1847
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1848

1849
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1850
        self._rampup_begin_step = rampup_begin_step
1851 1852
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1853

1854
        self._rampup_begin_step_var = None
1855
        self._global_step_var = None
1856

1857 1858 1859 1860 1861 1862
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
1863 1864 1865 1866 1867 1868 1869
            assert isinstance(num_trainers, int), (
                "The type of num_trainers should be 'int', but received %s"
                % type(num_trainers)
            )
            assert (
                num_trainers > 0
            ), "The value of num_trainers should be greater than 0!"
1870 1871

            self._num_trainers = num_trainers
1872
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1873

1874
        self.regular_type, self.regular_coeff = self._get_regularization_param(
1875 1876
            self.regularization
        )
1877

1878 1879 1880
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1881

1882 1883
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1884
            from .regularizer import L1Decay, L2Decay
1885

1886 1887 1888 1889
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1890 1891
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1892
        return regular_type, regular_coeff
1893

1894 1895
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
1896 1897 1898 1899 1900 1901
        if (
            var_numel < 16384
            or param_var.type == core.VarDesc.VarType.SELECTED_ROWS
            or grad_var.type == core.VarDesc.VarType.SELECTED_ROWS
            or param_var.dtype != core.VarDesc.VarType.FP32
        ):
1902 1903 1904 1905 1906
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1907 1908 1909
        velocity_acc = self._get_accumulator(
            self._u_velocity_acc_str, param_and_grad[0]
        )
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1923 1924

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1925 1926 1927
            type = "momentum"
        else:
            type = "dgc_momentum"
1928 1929 1930 1931 1932 1933
            inputs.update(
                {
                    "current_step": self._global_step_var,
                    "nranks": self._nranks_var,
                }
            )
1934
            outputs.update({'Grad_out': param_and_grad[1]})
1935
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1936 1937

        # create the dgc momentum optimize op
1938 1939 1940 1941 1942 1943 1944
        dgc_momentum_op = block.append_op(
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1945 1946
        return dgc_momentum_op

1947 1948 1949
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
1950 1951
            name=counter_name, dtype='float32', shape=[1], persistable=True
        )
1952
        if is_new_var:
1953 1954 1955 1956
            helper.set_variable_initializer(
                counter,
                initializer=Constant(value=float(begin - 1), force_cpu=True),
            )
1957 1958 1959 1960 1961
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
1962 1963
                stop_gradient=True,
            )
1964 1965 1966 1967
            counter.stop_gradient = True

        return counter

1968 1969 1970
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
1971 1972
            name=name, dtype='float32', shape=[1], persistable=True
        )
1973
        if is_new_var:
1974 1975 1976 1977
            helper.set_variable_initializer(
                counter,
                initializer=Constant(value=float(value), force_cpu=True),
            )
1978 1979 1980 1981
            counter.stop_gradient = True

        return counter

1982 1983 1984 1985 1986 1987
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
1988 1989
            counter_name=core.dgc.kDGCCounterName(), begin=0
        )
1990

1991 1992 1993
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1
        )
1994

1995 1996 1997 1998 1999
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
2000
            name=core.dgc.kDGCRampUpBeginStepName(),
2001
            value=self._rampup_begin_step * 1.0,
2002 2003
            force_cpu=True,
        )
2004

2005 2006
        self.helper = LayerHelper(self.__class__.__name__)

2007
        for param_var, grad_var in param_and_grads:
2008 2009 2010
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

2011
            if not self._is_use_dgc(param_var, grad_var):
2012 2013
                continue

2014
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
2015

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCKName(),
                value=0.0,
                force_cpu=True,
            )

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCEncodedName(),
                value=0.0,
                force_cpu=False,
            )

            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False,
            )
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
2062 2063
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
            self._dgc_op(
                param_var,
                clip_var,
                grad_var,
                u_var,
                v_var,
                k_var,
                encoded_var,
                gather_var,
            )
2074 2075 2076 2077

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
2078 2079 2080
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
2081 2082 2083 2084 2085 2086 2087 2088 2089
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
            name = unique_name.generate_with_ignorable_key(
                ".".join([helper.name, 'tmp'])
            )

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False
        )

        helper.append_op(
            type="dgc_clip_by_norm",
            inputs={"X": x, "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step),
            },
            outputs={"Out": out},
        )
2107 2108 2109 2110
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
2111 2112 2113
            return self._clip_by_norm(
                x=grad_var, max_norm=clip_norm, name=grad_var.name
            )
2114

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
    def _dgc_op(
        self,
        param_var,
        clip_var,
        grad_var,
        u_var,
        v_var,
        k_var,
        encoded_var,
        gather_var,
    ):
2126 2127
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
2128

2129 2130 2131 2132 2133
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
                param_var.regularizer
            )

        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "Param": param_var,
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step),
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
            },
            stop_gradient=True,
        )
2166 2167 2168

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
2169 2170 2171
        dgc_op._set_attr(
            op_maker.kOpRoleVarAttrName(), [param_var.name, grad_var.name]
        )
2172

2173
    @imperative_base.no_grad
2174
    def apply_gradients(self, params_grads):
2175 2176 2177 2178 2179
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

2180
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
2181 2182 2183 2184 2185
        (
            params_grads,
            table_param_and_grad,
            table_optimize_op,
        ) = self._process_distribute_lookuptable(params_grads)
2186 2187 2188

        not_dgc_params_grads = []
        dgc_params_grads = []
2189
        # DGC clip and regularization in optimizer.backward
2190 2191 2192 2193 2194 2195
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

2196
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
2197 2198 2199 2200
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
2201 2202
                not_dgc_params_grads
            )
2203

2204
        not_dgc_params_grads = self.append_regularization_ops(
2205 2206
            not_dgc_params_grads, self.regularization
        )
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

2218

2219
class LarsMomentumOptimizer(Optimizer):
2220
    r"""
2221 2222 2223 2224 2225 2226 2227 2228 2229
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

2230
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
2231 2232 2233

        & param = param - velocity

2234 2235 2236 2237 2238 2239
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
2240
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2241 2242
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2243 2244 2245 2246 2247
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2248 2249 2250
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2251
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2252 2253
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
2254 2255
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
2256 2257 2258
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
2259

2260 2261 2262
    Examples:
        .. code-block:: python

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2279 2280 2281
    """
    _velocity_acc_str = "velocity"

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
2297 2298
        assert learning_rate is not None
        assert momentum is not None
2299
        super().__init__(
2300 2301 2302 2303 2304 2305
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2306 2307 2308 2309
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
2310 2311 2312 2313 2314
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
2315 2316 2317 2318 2319
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
2320 2321 2322 2323
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
2324

2325 2326
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
2327 2328 2329 2330 2331 2332 2333
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
2334
            block = self.helper.startup_program.global_block()
2335 2336 2337 2338 2339 2340 2341 2342 2343
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
2344
            self._master_weights[param.name] = var
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
2357 2358 2359 2360 2361 2362
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
2363
        target_name = target_param.name
2364 2365 2366 2367
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
2368 2369
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
2370 2371 2372
                    name, target_name
                )
            )
2373
        return self._accumulators[name][target_name]
2374 2375 2376 2377 2378

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2379 2380 2381 2382
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
2383 2384 2385 2386
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
2387 2388 2389 2390
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2391 2392 2393 2394
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2395 2396 2397 2398 2399 2400 2401 2402
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

2403 2404 2405
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
2406 2407
        lr = self._create_param_lr(param_and_grad)

2408 2409 2410 2411 2412 2413 2414 2415 2416
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
2417 2418 2419

        attrs = {
            "mu": self._momentum,
2420
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
2421
            "lars_weight_decay": [_lars_weight_decay],
2422
            "multi_precision": find_master,
L
limingshu 已提交
2423
            "epsilon": self._epsilon,
2424
            "rescale_grad": self._rescale_grad,
2425 2426 2427 2428 2429 2430
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
2431
            "LearningRate": lr,
2432 2433 2434 2435 2436 2437 2438 2439
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
2440
        if framework._non_static_mode():
2441
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
2461 2462
        else:
            # create the momentum optimize op
2463 2464 2465 2466 2467 2468 2469
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
2470

2471
            return momentum_op
2472 2473


2474
class AdagradOptimizer(Optimizer):
2475
    r"""
2476 2477
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2478

2479
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2480 2481 2482 2483 2484 2485 2486

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2487 2488 2489 2490 2491 2492
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2493 2494 2495
    for numerical stability to avoid the division by zero error.

    Args:
2496 2497 2498 2499
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2500
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2501 2502
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2503 2504 2505 2506 2507
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2508 2509 2510
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2511
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2512 2513 2514 2515 2516
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2517 2518 2519 2520

    Examples:
        .. code-block:: python

2521
            import numpy as np
2522
            import paddle.fluid as fluid
2523 2524

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2525
            inp = fluid.data(name="inp", shape=[2, 2])
2526 2527
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2528
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2529 2530 2531 2532 2533 2534 2535
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2536 2537 2538
    """
    _moment_acc_str = "moment"

2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2549 2550
        assert learning_rate is not None
        assert epsilon is not None
2551
        super().__init__(
2552 2553 2554 2555 2556 2557
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2558 2559
        self.type = "adagrad"
        self._epsilon = epsilon
2560
        self.initial_accumulator_value = initial_accumulator_value
2561 2562 2563 2564 2565

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2566 2567 2568 2569 2570
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2571 2572 2573 2574

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2575 2576 2577
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
2578
        if in_dygraph_mode():
2579 2580 2581 2582 2583 2584 2585
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                self._epsilon,
            )
C
caozhou 已提交
2586 2587
            return None
        elif _in_legacy_dygraph():
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
            _legacy_C_ops.adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
            )
C
caozhou 已提交
2598
            return None
2599 2600 2601 2602 2603 2604 2605 2606
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2607
                    "LearningRate": self._create_param_lr(param_and_grad),
2608 2609 2610
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2611
                    "MomentOut": moment_acc,
2612 2613
                },
                attrs={"epsilon": self._epsilon},
2614 2615
                stop_gradient=True,
            )
2616

2617
            return adagrad_op
2618 2619 2620


class AdamOptimizer(Optimizer):
2621
    r"""
T
tianshuo78520a 已提交
2622
    The Adam optimizer uses an optimization described at the end
2623 2624 2625
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2626

2627
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2642 2643
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2644
    Args:
2645 2646
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2647 2648
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2649
            The default value is 0.9.
2650 2651
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2652
            The default value is 0.999.
2653 2654
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2655
            The default value is 1e-08.
H
hong 已提交
2656
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2657 2658
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2659 2660 2661 2662 2663
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2664 2665 2666
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2667
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2678
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2679
            for whole model instead of creating beta_pow for each parameter. Default is false.
2680 2681
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2682
            use same align_size as allocator.
Q
qiaolongfei 已提交
2683 2684 2685 2686

    Examples:
        .. code-block:: python

2687 2688 2689 2690 2691 2692
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2693 2694
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2728
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2745 2746 2747 2748 2749 2750 2751
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2752 2753 2754 2755 2756 2757 2758

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2759
                    return beta1, beta2, epsilon
2760

2761
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2762 2763
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2764
                                                    beta1=beta1,
2765 2766
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2777 2778 2779
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2780 2781
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2782

2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2798 2799 2800 2801
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2802
        super().__init__(
2803 2804 2805 2806 2807 2808 2809 2810
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2811 2812 2813 2814
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2815
        self._lazy_mode = lazy_mode
2816
        self._use_global_beta_pow = use_global_beta_pow
2817 2818 2819 2820 2821 2822

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2823 2824
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2825 2826 2827 2828
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2829 2830 2831
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2832
                    shape=[1],
2833 2834 2835
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2836 2837 2838
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2839 2840 2841
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2842
                    shape=[1],
2843 2844 2845
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2846 2847
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2848
                name=self._beta1_pow_acc_str,
2849 2850 2851
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2852
                shape=[1],
2853 2854 2855
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2856
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2857
                name=self._beta2_pow_acc_str,
2858 2859 2860
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2861
                shape=[1],
2862 2863 2864
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2865 2866 2867 2868

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2869 2870 2871 2872 2873 2874
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2875 2876
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2877 2878
                self._beta1_pow_acc_str
            )
2879
            beta2_pow_acc = self._get_global_accumulator(
2880 2881
                self._beta2_pow_acc_str
            )
2882
        else:
2883 2884 2885 2886 2887 2888
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2889
        lr = self._create_param_lr(param_and_grad)
2890
        # create the adam optimize op
2891

J
Jiabin Yang 已提交
2892
        if framework._non_static_mode():
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2903
            master_weight = None
2904
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2932 2933 2934

            return None

2935
        inputs = {
2936 2937
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2938
            "LearningRate": [lr],
2939 2940 2941
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2942
            "Beta2Pow": [beta2_pow_acc],
2943
        }
2944 2945 2946 2947 2948 2949 2950

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2951
        outputs = {
2952 2953 2954 2955 2956
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2957 2958 2959
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2960
            "min_row_size_to_use_multithread": 1000,
2961
            'use_global_beta_pow': self._use_global_beta_pow,
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2972 2973 2974 2975
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2976

2977 2978 2979 2980 2981 2982 2983
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2984 2985 2986

        return adam_op

2987
    def _finish_update(self, block, parameters_and_grads):
2988
        r"""Update beta1_pow and beta2_pow accumulator"""
2989 2990 2991
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2992 2993
                self._beta1_pow_acc_str
            )
2994
            beta2_pow_acc = self._get_global_accumulator(
2995 2996
                self._beta2_pow_acc_str
            )
2997 2998 2999

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
3000
                outputs = {"Out": beta1_pow_acc}
3001 3002
                attrs = {}
                if isinstance(self._beta1, Variable):
3003 3004
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
3005 3006 3007 3008 3009 3010 3011
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3012 3013
                else:
                    attrs['scale'] = self._beta1
3014 3015 3016 3017 3018 3019 3020
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3021 3022

                inputs = {"X": beta2_pow_acc}
3023
                outputs = {"Out": beta2_pow_acc}
3024 3025
                attrs = {}
                if isinstance(self._beta2, Variable):
3026 3027
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
3028 3029 3030 3031 3032 3033 3034
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3035 3036
                else:
                    attrs['scale'] = self._beta2
3037 3038 3039 3040 3041 3042 3043
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3044

3045 3046

class AdamaxOptimizer(Optimizer):
3047
    r"""
3048
    The Adamax optimizer is implemented based on the Adamax Optimization
3049 3050 3051
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
3052

3053
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

3067
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
3068

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
3081
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3082 3083
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3084 3085 3086 3087 3088
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3089 3090 3091
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3092
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3093 3094 3095 3096 3097 3098
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
3113
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3114 3115
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
3116
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
3117 3118 3119 3120 3121 3122 3123 3124 3125
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
3126 3127 3128
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
3129
    _beta1_pow_acc_str = "beta1_pow_acc"
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3142 3143 3144 3145
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3146
        super().__init__(
3147 3148 3149 3150 3151 3152
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3153 3154 3155 3156 3157 3158 3159 3160
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
3161 3162
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
3163 3164 3165 3166 3167 3168
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
3169 3170 3171 3172 3173

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
3174 3175 3176 3177 3178 3179
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
3180 3181

        if framework.in_dygraph_mode():
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
3193
        elif framework._in_legacy_dygraph():
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
            _legacy_C_ops.adamax(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                param_and_grad[0],
                moment,
                inf_norm,
                "beta1",
                self._beta1,
                "beta2",
                self._beta2,
                "epsilon",
                self._epsilon,
            )
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
3221
                    "Beta1Pow": beta1_pow_acc,
3222 3223 3224 3225
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
3226
                    "InfNormOut": inf_norm,
3227 3228 3229 3230
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
3231
                    "epsilon": self._epsilon,
3232
                },
3233 3234
                stop_gradient=True,
            )
3235

3236
            return adamax_op
3237

3238
    def _finish_update(self, block, parameters_and_grads):
3239
        """Update Beta1 Power accumulator"""
3240
        assert isinstance(block, framework.Block)
3241
        for param, grad in parameters_and_grads:
C
chengduo 已提交
3242
            if grad is None or param.trainable is False:
3243
                continue
3244 3245 3246 3247 3248 3249
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
J
Jiabin Yang 已提交
3250
                if framework._non_static_mode():
3251
                    if framework.in_dygraph_mode():
3252 3253 3254
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
3255
                    else:
3256 3257 3258
                        tmp = _legacy_C_ops.scale(
                            beta1_pow_acc, "scale", self._beta1
                        )
3259 3260
                    beta1_pow_acc.copy_(tmp, False)
                else:
3261 3262 3263 3264 3265 3266 3267
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
3268 3269


3270
class DpsgdOptimizer(Optimizer):
3271
    r"""
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
3308
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3309 3310
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3311 3312 3313 3314
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

3315 3316 3317 3318 3319 3320 3321 3322
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
3323 3324 3325 3326
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
3327
        super().__init__(
3328 3329
            learning_rate=learning_rate, parameter_list=parameter_list
        )
3330 3331 3332 3333
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
3334 3335 3336 3337 3338 3339 3340
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
3341 3342 3343 3344 3345

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
3346
        if self._seed is None:
Z
zhongpu 已提交
3347 3348
            self._seed = 0

J
Jiabin Yang 已提交
3349
        if framework._non_static_mode():
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
3364
        else:
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
3381

3382
            return dpsgd_op
3383 3384


3385
class DecayedAdagradOptimizer(Optimizer):
3386
    r"""
3387 3388 3389
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
3390

3391
    The parameter ``param_out`` update rule with gradient ``grad``:
3392 3393 3394 3395 3396 3397 3398

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

3399 3400 3401 3402
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
3403 3404 3405
    stability to avoid the division by zero error.

    Args:
3406 3407 3408 3409 3410
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
3411
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3412 3413
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3414 3415 3416 3417 3418
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3419 3420 3421
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3422
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3423 3424 3425 3426 3427 3428
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
3429 3430 3431 3432

    Examples:
        .. code-block:: python

3433 3434
            import paddle.fluid as fluid

3435 3436 3437 3438
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3439
            optimizer.minimize(cost)
3440 3441 3442
    """
    _moment_acc_str = "moment"

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3453 3454 3455 3456
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3457
        super().__init__(
3458 3459 3460 3461 3462 3463
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3477 3478 3479
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3480

J
Jiabin Yang 已提交
3481
        if framework._non_static_mode():
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3494 3495 3496 3497 3498 3499 3500 3501
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3502
                    "LearningRate": self._create_param_lr(param_and_grad),
3503 3504 3505
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3506
                    "MomentOut": moment_acc,
3507
                },
3508 3509 3510
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3511

3512
            return decayed_adagrad_op
3513 3514


3515
class AdadeltaOptimizer(Optimizer):
3516
    r"""
Z
Zeng Jinle 已提交
3517
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3518

Z
Zeng Jinle 已提交
3519
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3520 3521 3522
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3523

Z
Zeng Jinle 已提交
3524 3525
    .. math::

Z
Zeng Jinle 已提交
3526
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3527

Z
Zeng Jinle 已提交
3528
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3529

Z
Zeng Jinle 已提交
3530
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3531 3532

    Args:
Z
Zeng Jinle 已提交
3533 3534 3535
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3536
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3537 3538
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3539 3540 3541 3542 3543
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3544 3545 3546
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3547
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3548 3549 3550
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3551 3552 3553 3554

    Examples:
        .. code-block:: python

3555
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3556

3557
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3558 3559
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3560 3561
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3562

Z
Zeng Jinle 已提交
3563 3564 3565 3566
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3567
    """
3568

3569 3570 3571
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3582 3583 3584 3585 3586 3587
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3588
        super().__init__(
3589 3590 3591 3592 3593 3594
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3595 3596 3597 3598 3599
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3600 3601
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3602 3603 3604 3605 3606 3607

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3608 3609
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3610 3611

        avg_squared_grad_acc = self._get_accumulator(
3612 3613
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3614
        avg_squared_update_acc = self._get_accumulator(
3615 3616
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3617

3618
        if framework.in_dygraph_mode():
3619 3620 3621 3622 3623 3624 3625 3626
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                self._rho,
                self._epsilon,
            )
3627
        elif framework._in_legacy_dygraph():
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
            _legacy_C_ops.adadelta(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                param_and_grad[0],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                "epsilon",
                self._epsilon,
                "rho",
                self._rho,
            )
3641 3642
        else:
            # Create the adadelta optimizer op
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
            adadelta_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "AvgSquaredGrad": avg_squared_grad_acc,
                    "AvgSquaredUpdate": avg_squared_update_acc,
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "AvgSquaredGradOut": avg_squared_grad_acc,
                    "AvgSquaredUpdateOut": avg_squared_update_acc,
                },
                attrs={"epsilon": self._epsilon, "rho": self._rho},
                stop_gradient=True,
            )
3659

3660
            return adadelta_op
3661 3662


Q
qingqing01 已提交
3663
class RMSPropOptimizer(Optimizer):
3664
    r"""
Q
qingqing01 已提交
3665 3666 3667 3668 3669 3670 3671 3672
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3673
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3674 3675 3676 3677

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3678
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3679 3680 3681 3682 3683 3684

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3685
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3686

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3701 3702 3703 3704
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3705
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3706 3707 3708 3709 3710
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3711 3712 3713
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3714
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3715
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3716
        momentum(float): :math:`\\beta` in equation is the momentum term,
3717
            default is 0.0.
3718 3719 3720 3721
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3722
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3723 3724
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3725 3726 3727 3728 3729
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3730 3731 3732
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3733
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3734 3735
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3736 3737 3738 3739 3740 3741 3742

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3768 3769 3770 3771
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3772
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3773

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3786
        super().__init__(
3787 3788 3789 3790 3791 3792
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3806
        self._centered = centered
Q
qingqing01 已提交
3807 3808 3809 3810 3811 3812 3813 3814

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3815
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3816 3817 3818 3819 3820

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3821 3822 3823 3824 3825 3826 3827 3828 3829
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
3830
        if in_dygraph_mode():
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
C
caozhou 已提交
3843 3844
            return None
        elif _in_legacy_dygraph():
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
            _legacy_C_ops.rmsprop(
                param_and_grad[0],
                mean_square_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[1],
                momentum_acc,
                param_and_grad[0],
                momentum_acc,
                mean_square_acc,
                mean_grad_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._rho,
                "momentum",
                self._momentum,
                "centered",
                self._centered,
            )
C
caozhou 已提交
3864
            return None
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
3880
                    "MeanGradOut": mean_grad_acc,
3881 3882 3883 3884 3885
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3886
                    "centered": self._centered,
3887
                },
3888 3889
                stop_gradient=True,
            )
Q
qingqing01 已提交
3890

3891
            return rmsprop_op
Q
qingqing01 已提交
3892 3893


Q
qiaolongfei 已提交
3894
class FtrlOptimizer(Optimizer):
3895
    r"""
Q
qiaolongfei 已提交
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3934 3935 3936 3937 3938
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3939
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3940 3941
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3942 3943 3944 3945 3946
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3947 3948 3949
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3950
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3951 3952
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3953 3954 3955 3956 3957 3958 3959

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3984

3985
    NOTE:
C
chengduo 已提交
3986
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3987 3988 3989 3990 3991
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
4003
        super().__init__(
4004 4005 4006 4007 4008 4009
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

4030 4031 4032 4033 4034 4035
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
J
Jiabin Yang 已提交
4036
        if framework._non_static_mode():
4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
4053 4054

        else:
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
4076

4077
            return ftrl_op
Q
qiaolongfei 已提交
4078 4079


Y
Yibing Liu 已提交
4080
class LambOptimizer(AdamOptimizer):
4081
    r"""
Y
Yibing Liu 已提交
4082 4083
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

4084 4085 4086
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
4087
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
4088 4089 4090 4091 4092

    The updating of parameters follows:

    ..  math::

4093
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
4094

Y
Yibing Liu 已提交
4095
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
4096

4097 4098 4099 4100
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
4101
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
4102

Y
Yibing Liu 已提交
4103
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
4104 4105


4106
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
4107 4108 4109
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
4110 4111 4112 4113 4114 4115 4116 4117
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
4118
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
4119 4120
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
4121 4122 4123 4124 4125
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
4126 4127
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
4128 4129 4130
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
4131 4132
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
4133
            Default None.
4134
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
4135
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
4136 4137 4138

    Examples:
        .. code-block:: python
4139 4140

            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4141

Y
Yibing Liu 已提交
4142
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
4143 4144 4145
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
4146 4147 4148 4149 4150
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
4151 4152 4153 4154 4155 4156 4157
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
4171 4172 4173 4174 4175
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
4176
        super().__init__(
4177 4178 4179 4180 4181 4182 4183 4184 4185
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
4186 4187
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
4188
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
4189 4190 4191

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
4192
        block.program._use_lamb = True
Y
Yibing Liu 已提交
4193

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
4211 4212 4213
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
4214
        lr = self._create_param_lr(param_and_grad)
4215
        master_weight = None
J
Jiabin Yang 已提交
4216
        if framework._non_static_mode():
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
4241
            return None
Y
Yibing Liu 已提交
4242

Y
Yibing Liu 已提交
4243
        # create the lamb optimize op
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
4270 4271 4272 4273

        return lamb_op


4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
4287
Dpsgd = DpsgdOptimizer
4288
DecayedAdagrad = DecayedAdagradOptimizer
4289
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
4290
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
4291
Ftrl = FtrlOptimizer
4292
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
4293
Lamb = LambOptimizer
4294 4295 4296


class ModelAverage(Optimizer):
4297
    r"""
4298
	:api_attr: Static Graph
S
swtkiwi 已提交
4299

4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
4318

4319 4320 4321 4322 4323 4324 4325 4326 4327
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
4328 4329

    Args:
4330 4331 4332
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
4333 4334 4335 4336 4337
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
4338 4339 4340
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
4341

4342
    Examples:
Q
qiaolongfei 已提交
4343 4344 4345

      .. code-block:: python

4346 4347 4348 4349 4350 4351
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
4352

4353 4354 4355 4356
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
4357
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
4358 4359 4360 4361 4362 4363 4364 4365
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
4366
                                                         max_average_window=12500)
4367 4368

            exe.run(startup_program)
4369 4370 4371 4372 4373
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
4374 4375

            # apply ModelAverage
4376
            with model_average.apply(exe):
4377 4378 4379 4380
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
4381 4382
    """

4383 4384 4385 4386 4387 4388 4389 4390
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
J
Jiabin Yang 已提交
4391
        if framework._non_static_mode():
Z
zhongpu 已提交
4392
            raise Exception("In dygraph, don't support ModelAverage.")
4393
        super().__init__(0.0, regularization=regularization, name=name)
4394 4395 4396
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
4397

4398
        self.params_grads = []
4399 4400 4401
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
4402
            if param.do_model_average != False:
4403
                grad = param.block.create_var(
4404 4405 4406
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
4407 4408
                    dtype=param.dtype,
                    persistable=False,
4409 4410
                    stop_gradient=True,
                )
4411
                self.params_grads.append((param, grad))
4412

4413
        for param, grad in self.params_grads:
4414 4415
            if grad is None:
                continue
X
Xin Pan 已提交
4416
            with param.block.program._optimized_guard(
4417 4418
                [param, grad]
            ), name_scope('move_average'):
4419
                self._append_average_accumulate_op(param)
4420

4421 4422 4423 4424
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
4425
                self._add_average_apply_op(block, param_grad)
4426 4427 4428 4429 4430

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
4431
                self._add_average_restore_op(block, param_grad)
4432

4433
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
4434 4435 4436 4437 4438 4439
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
4440 4441
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
4442
        old_num_accumulates = block._clone_variable(
4443 4444
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
4445
        num_updates = block._clone_variable(
4446 4447
            self._get_accumulator('num_updates', param)
        )
4448 4449 4450 4451 4452
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
4453
        tmp = layers.cast(
4454
            x=tmp, dtype='float32' if self._dtype is None else self._dtype
4455
        )
D
dzhwinter 已提交
4456
        sum = layers.cast(
4457
            x=sum, dtype='float32' if self._dtype is None else self._dtype
4458
        )
4459
        paddle.assign(paddle.divide(sum, tmp), output=param)
4460 4461

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4462 4463
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4464 4465 4466 4467 4468 4469 4470
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4507

S
rename  
sneaxiy 已提交
4508
    @signature_safe_contextmanager
4509
    def apply(self, executor, need_restore=True):
4510 4511
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4512 4513

        Args:
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4558
        """
4559 4560 4561 4562 4563 4564
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4565 4566

    def restore(self, executor):
4567 4568
        """
        Restore ``Parameter`` values of current model.
4569

4570
        Args:
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4615
        """
4616
        executor.run(self.restore_program)
4617 4618


4619
class ExponentialMovingAverage:
4620
    r"""
4621
        :api_attr: Static Graph
S
swtkiwi 已提交
4622

4623 4624 4625 4626 4627 4628
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4629
        \\text{EMA}_0 & = 0
4630

4631
        \\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t
4632

4633 4634 4635
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4636
    the **restore()** method is used to restore the parameters.
4637

4638 4639 4640 4641
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters
    when calling **apply()** method would be
4642 4643

    ..  math::
4644

4645 4646
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

4647 4648
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4649
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4650
    allows users to pass a Variable to schedule the decay rate, in this case,
4651
    the actual decay rate becomes
4652

4653
    ..  math::
4654

4655 4656 4657
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4658 4659 4660


    Args:
4661 4662 4663
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4664 4665 4666 4667


    Examples:

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4696
                    feed={'x': data},
4697 4698 4699 4700 4701 4702
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4703
                        feed={'x': data},
4704 4705 4706 4707 4708 4709
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4710
                        feed={'x': data},
4711 4712 4713
                        fetch_list=[hidden.name])
                ema.restore(exe)

4714 4715
    """

4716
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4717
        if framework._non_static_mode():
Z
zhongpu 已提交
4718
            raise Exception(
4719 4720
                "In dygraph, don't support ExponentialMovingAverage."
            )
4721
        self._decay = decay
4722
        self._thres_steps = thres_steps
4723
        self._name = name if name is not None else ''
4724 4725
        self._decay_var = self._get_ema_decay()

4726
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4727
        self._params_tmps = []
4728
        for param in default_main_program().global_block().all_parameters():
4729
            if param.do_model_average != False:
4730 4731 4732 4733 4734 4735 4736 4737
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4738
                self._params_tmps.append((param, tmp))
4739

Y
Yibing Liu 已提交
4740 4741
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4742 4743 4744
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4745
                self._ema_vars[param.name] = self._create_ema_vars(param)
4746 4747 4748 4749

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4750
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4751
            for param, tmp in self._params_tmps:
4752 4753
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4754
                ema = block._clone_variable(self._ema_vars[param.name])
4755
                layers.assign(input=param, output=tmp)
4756
                # bias correction
4757 4758
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4759 4760 4761
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow)
                        )
4762 4763
                    with switch.default():
                        layers.assign(output=param, input=ema)
4764 4765 4766 4767

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4768
            for param, tmp in self._params_tmps:
4769 4770 4771 4772
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4773 4774 4775 4776 4777 4778 4779
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4780 4781
                name="scheduled_ema_decay_rate",
            )
4782 4783 4784 4785 4786 4787 4788 4789

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4790 4791
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4792 4793 4794
        return decay_var

    def _get_decay_pow(self, block):
4795 4796 4797 4798 4799 4800 4801
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4802
        global_step = layers.cast(global_step, "float32")
4803
        decay_var = block._clone_variable(self._decay_var)
4804
        decay_pow_acc = paddle.pow(decay_var, global_step)
4805
        return decay_pow_acc, global_step
4806

Y
Yibing Liu 已提交
4807
    def _create_ema_vars(self, param):
4808 4809 4810 4811 4812
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4813 4814
            persistable=True,
        )
4815 4816 4817

        return param_ema

Y
Yibing Liu 已提交
4818
    def update(self):
4819 4820
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4821 4822
        train program.
        """
4823
        global_step = layers.autoincreased_step_counter(
4824 4825
            counter_name=self._step_counter_name
        )
4826
        param_master_emas = []
Y
Yibing Liu 已提交
4827
        for param, tmp in self._params_tmps:
4828 4829 4830
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4831
                param_ema = self._ema_vars[param.name]
4832
                if param.name + '.master' in self._ema_vars:
4833 4834 4835 4836
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4837 4838
                        1 - self._decay_var
                    )
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4849 4850 4851
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4852

4853 4854 4855 4856
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4857

4858 4859
        Args:
            executor (Executor): The Executor to execute applying.
4860
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4861
                applying. Default True.
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4872

4873 4874 4875 4876
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4877 4878


4879
class PipelineOptimizer:
4880
    """
4881
        :api_attr: Static Graph
S
swtkiwi 已提交
4882

4883 4884 4885 4886
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4887

4888
    Args:
4889 4890 4891
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4892

4893 4894
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4895

4896
            import paddle.fluid as fluid
H
hutuxian 已提交
4897 4898
            import paddle.fluid.layers as layers

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4915
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4916
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4917
            optimizer.minimize(loss)
4918 4919 4920 4921 4922 4923 4924 4925 4926

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4927 4928
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4929 4930
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4931
            exe.train_from_dataset(
4932
                    fluid.default_main_program())
4933
            data_loader.reset()
4934 4935
    """

4936
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4937 4938 4939 4940 4941
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4942
        if framework._non_static_mode():
Z
zhongpu 已提交
4943
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4944 4945 4946 4947 4948
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
            paddle.fluid.contrib.mixed_precision.decorator.OptimizerWithMixedPrecision,
        )
4949
        if not isinstance(optimizer, valid_optimizers):
4950 4951 4952 4953 4954 4955 4956
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4957
        self._optimizer = optimizer
4958 4959 4960 4961 4962 4963

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4964 4965 4966
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4967
        self._num_microbatches = num_microbatches
4968 4969 4970
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4971
        self._start_cpu_core_id = start_cpu_core_id
4972 4973 4974 4975 4976 4977
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4978
        self._param_device_map = None
4979 4980
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4981 4982
        self.output_var_to_op = None
        self.input_var_to_op = None
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5012 5013 5014 5015
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
5016 5017
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
5018 5019 5020
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
5021
                'ring_id': self.global_ring_id,
5022
                self._op_role_key: self._op_role.Optimize,
5023 5024 5025
                'use_calc_stream': True,
            },
        )
5026 5027
        offset += 1
        if op.type == "reduce_any":
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5039
            offset += 1
5040
        return offset
H
hutuxian 已提交
5041

5042
    def _create_vars(self, block, ori_block):
5043
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
5044
        used_var_set = set()
5045 5046 5047 5048 5049 5050 5051 5052 5053
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
5054
            # For op process vars on all devices, remove its input
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
5080 5081 5082 5083 5084 5085 5086 5087
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
5088
            for var in vars:
5089 5090
                # a var whose name contains "blocking_queue"
                # only exists in startup program
5091
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
5092 5093
                    continue
                used_var_set.add(var)
5094 5095
                if block._find_var_recursive(str(var)):
                    continue
5096
                source_var = ori_block._var_recursive(str(var))
5097
                if source_var.type == core.VarDesc.VarType.READER:
5098
                    dest_var = block.create_var(
5099 5100
                        name=var,
                        type=core.VarDesc.VarType.READER,
5101 5102
                        persistable=source_var.persistable,
                    )
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
5114 5115
                        error_clip=source_var.error_clip,
                    )
5116
                else:
5117
                    dest_var = block._clone_variable(source_var, False)
5118
                self._clone_var_attr(dest_var, source_var)
5119 5120 5121
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
5122 5123
            if self.use_sharding or not should_insert:
                continue
5124 5125 5126 5127
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
5128

5129
    def _is_loss_grad_op(self, op):
5130 5131
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
5132
        return op_role & int(self._op_role.Backward) and op_role & int(
5133 5134
            self._op_role.Loss
        )
5135

5136
    def _is_forward_op(self, op):
5137 5138 5139
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
5140

5141
    def _is_backward_op(self, op):
5142
        return self._op_role_key in op.attr_names and (
5143 5144
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
5145 5146 5147 5148

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
5149 5150

    def _is_optimize_op(self, op):
5151
        return self._op_role_key in op.attr_names and (
5152 5153
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
5154 5155

    def _is_update_op(self, op):
5156 5157 5158 5159 5160
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
5161

5162
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
5163
        """
5164
        Split a program into sections according to devices that ops run on.
5165
        The op whose op_device attr is "gpu:all" is copied to all sections.
5166 5167 5168

        Args:
            main_program (Program): the main program
5169
            devices: all used devices
H
hutuxian 已提交
5170
        """
5171
        # Map from device to its corresponding section program info
5172
        device_program_map = defaultdict(Program)
5173

5174
        block = main_program.block(0)
5175 5176
        for op in block.ops:
            device = op.attr(self._op_device_key)
5177
            # Copy ops whose op_device set to "gpu:all" to all sections.
5178
            if device == f"{self._device}:all":
5179
                for device in devices:
5180 5181
                    program = device_program_map[device]
                    op_desc = op.desc
5182
                    ap_op = program.global_block().desc.append_op()
5183
                    ap_op.copy_from(op_desc)
5184
                    ap_op._set_attr(self._op_device_key, "")
5185 5186 5187
            else:
                program = device_program_map[device]
                op_desc = op.desc
5188
                ap_op = program.global_block().desc.append_op()
5189
                ap_op.copy_from(op_desc)
5190
                ap_op._set_attr(self._op_device_key, "")
5191

5192
        program_list = []
5193
        for key in devices:
5194
            program = device_program_map[key]
5195 5196
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
5197

5198
        return program_list
H
hutuxian 已提交
5199

5200 5201 5202 5203 5204 5205 5206
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
5207 5208
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
5209
            'or beta2_pow_acc.'
5210 5211
        )
        param_name = var_name[0 : var_name.index('_beta')]
5212 5213 5214
        device = self._param_device_map[param_name]
        return device

5215 5216
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
5217 5218 5219
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
5220 5221
            if device == "cpu":
                assert op.type == "fill_constant", (
5222
                    "For ops in startup program with the op_device attribute "
5223 5224
                    "of cpu, they must be of type fill_constant."
                )
5225 5226 5227
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

5228
            if device:
5229
                device_index = int(device.split(':')[1])
5230
            else:
5231 5232
                # LR related ops
                device = None
5233 5234
            if device and device_index != device_id:
                continue
5235
            op_desc = op.desc
5236
            ap_op = new_startup_program.global_block().desc.append_op()
5237 5238 5239
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
5240
        self._create_vars(new_startup_program.global_block(), block)
5241 5242
        return new_startup_program

5243
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
5244
        """
5245
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
5246
        """
5247 5248 5249 5250 5251 5252
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

5253
        post_ops = self.input_var_to_op[var_name]
5254
        if post_ops is None:
5255
            return None
5256 5257 5258 5259 5260 5261
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
5262

5263
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
5264
        """
5265 5266
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
5267
        """
5268
        prev_ops = self.output_var_to_op[var_name]
5269
        if prev_ops is None:
5270
            return None
5271 5272 5273 5274
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
5275
                break
5276
        return result_op
5277 5278

    def _rename_arg(self, op, old_name, new_name):
5279 5280
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
5281

5282
    def _create_var(self, block, ref_var, name, dtype=None):
5283 5284 5285 5286 5287 5288 5289 5290
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
5291
            dtype=ref_var.dtype if dtype is None else dtype,
5292 5293
            type=ref_var.type,
            lod_level=ref_var.lod_level,
5294 5295
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
5296 5297
            need_check_feed=ref_var.desc.need_check_feed(),
        )
5298
        self._clone_var_attr(new_var, ref_var)
5299 5300
        return new_var

5301 5302 5303 5304 5305
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

5306 5307 5308 5309 5310 5311
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
5312

5313 5314 5315 5316 5317 5318
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

5319
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
5320
        """
5321
        Get the op_device attribute of a op.
H
hutuxian 已提交
5322
        """
5323 5324 5325 5326 5327
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
5328
        if device:
5329 5330
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
5331
                "supported in pipeline parallemism."
5332
            )
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
5346
            op._set_attr(self._op_device_key, f"{self._device}:all")
5347 5348 5349 5350
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
5351 5352 5353
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
5354 5355 5356 5357
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
5358 5359 5360 5361
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
5362 5363 5364
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
5365 5366 5367
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
5368
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5369 5370
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
5371
            # for checkpoint offloading
5372 5373 5374
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
5375 5376 5377
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
5378
                post_op = self._find_post_op(idx, output_name)
5379 5380 5381
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
5382
            else:
5383
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5384 5385 5386
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
5387 5388 5389
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
5390 5391 5392
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
5393 5394 5395 5396 5397 5398 5399 5400 5401
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
5402
            param_name = self._strip_grad_suffix(grad_name[0])
5403 5404 5405 5406 5407
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
5408 5409
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
5410
                "and regularization ops must have op_role_var attribute."
5411
            )
5412
            op_role_var = op.attr(self._op_role_var_key)
5413 5414
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
5415
                "regularization ops must have two elements."
5416
            )
5417 5418
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
5419
            # For sum op added by global gradient clip, it must be
5420
            # put on all devices
5421 5422 5423 5424 5425 5426 5427
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
5428
                device = f"{self._device}:all"
5429
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
5430
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
5431
            op._set_attr(self._op_device_key, f"{self._device}:all")
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
5442 5443
        else:
            other_known_ops = [
5444 5445 5446 5447 5448 5449
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5450
            ]
5451 5452 5453
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5454
                "is {}".format(other_known_ops, op.type)
5455
            )
5456
            assert self._is_optimize_op(op)
5457
            op._set_attr(self._op_device_key, f"{self._device}:all")
5458 5459

    def _add_op_device_attr(self, block):
5460
        """
5461
        Add op_device attrribute for ops in block that have
5462
        not that attribute set.
5463
        """
5464
        for idx, op in enumerate(list(block.ops)):
5465 5466 5467 5468 5469
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5470
                # Copy read related ops to all section to make them exit
5471 5472 5473 5474
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5475
                op._set_attr(self._op_device_key, f"{self._device}:all")
5476 5477
                continue
            # op_device attribute has been set
5478 5479
            if self._get_op_device_attr(op):
                continue
5480
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5481

5482 5483
    def _check_validation(self, block):
        """
5484
        Check whether ops in a block have both the op_device and the
5485 5486
        op_role attributes set.
        Then, return all devices in order.
5487
        """
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5498
        for op in block.ops:
5499
            if not op._has_kernel(op.type):
5500 5501 5502 5503 5504 5505
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5506
            assert op.has_attr(
5507 5508
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5509
            op_role = op.attr(self._op_role_key)
5510 5511 5512 5513 5514
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5515

5516
            assert op.has_attr(
5517 5518 5519 5520
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5521 5522

            device = op.attr(self._op_device_key)
5523 5524 5525 5526 5527 5528 5529
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5530

5531
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5532 5533
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5534 5535
                "for pipeline parallelism."
            )
5536 5537

            if device not in device_list:
5538
                device_list.append(device)
5539

5540
        return device_list
5541

5542
    def _insert_sendrecv_ops_for_boundaries(self, block):
5543
        """
5544
        Insert a pair of send and recv ops for every two
5545 5546
        consecutive ops on different devices.
        """
5547
        # A map from var to device where op takes it as input,
5548
        # avoiding multiple send and recv ops.
5549
        input_var_to_device = dict()
5550 5551 5552 5553 5554 5555 5556 5557
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5558
            'first_optimize_index': first_optimize_index,
5559
        }
5560

5561
        for index, op in enumerate(list(block.ops)):
5562
            cur_device = op.attr(self._op_device_key)
5563 5564
            if cur_device == f"{self._device}:all":
                continue
5565 5566
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5567
                # skip data var
5568 5569
                if var.is_data:
                    continue
5570
                prev_device = None
5571 5572 5573

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5574 5575
                    if var_name not in self._param_device_map:
                        continue
5576
                    prev_device = self._param_device_map[var_name]
5577

5578
                if not prev_device:
5579 5580 5581
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5582

5583 5584
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5585

5586 5587
                if prev_device == cur_device:
                    continue
5588

5589 5590 5591 5592 5593 5594 5595
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5596 5597 5598 5599
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5600 5601
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5602
                        'please check the op_role of op={}'.format(op)
5603
                    )
5604 5605

                    if is_forward:
5606 5607
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5608
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5609 5610 5611
                                prev_id, cur_id, op
                            )
                        )
5612
                    elif is_backward:
5613 5614
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5615
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5616 5617 5618
                                prev_id, cur_id, op
                            )
                        )
5619

5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5630 5631
                            (cur_dev, prev_dev)
                        )
5632 5633 5634 5635 5636
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5637 5638
                            (cur_dev, prev_dev)
                        )
5639 5640 5641 5642 5643 5644
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5645
                    var = block.vars[var_name]
5646 5647 5648
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5649 5650 5651 5652 5653 5654 5655
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5656

5657
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5658
                        block._insert_op_without_sync(
5659
                            index=index + extra_index_info['index'],
5660 5661 5662
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5663
                                self._op_device_key: prev_dev,
5664 5665 5666
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5667 5668 5669
                                'ring_id': ring_id,
                            },
                        )
5670
                        extra_index_info['index'] += 1
5671
                        var_shape = list(var.shape)
5672 5673 5674 5675 5676
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5677
                        block._insert_op_without_sync(
5678
                            index=index + extra_index_info['index'],
5679 5680 5681
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5682
                                'out_shape': var_shape,
5683
                                'dtype': var.dtype,
5684
                                self._op_device_key: cur_dev,
5685 5686 5687
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5688 5689 5690
                                'ring_id': ring_id,
                            },
                        )
5691
                        extra_index_info['index'] += 1
5692
                    elif self.schedule_mode == '1F1B':  # 1F1B
5693
                        var_shape = list(var.shape)
5694 5695 5696 5697 5698
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5699

5700
                        numel = np.prod(var_shape)
5701 5702 5703
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5726 5727
                                },
                            )
5728 5729 5730
                            extra_index_info['index'] += 1
                            return

5731 5732
                        _check_stage(cur_id, prev_id)

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5743
                        extra_index_info['index'] += 1
5744 5745
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5746 5747 5748
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5749
                        block._insert_op_without_sync(
5750
                            index=index + extra_index_info['index'],
5751
                            type='send_v2'
5752 5753
                            if not use_mp or is_param
                            else 'partial_send',
5754 5755
                            inputs={'X': var},
                            attrs={
5756
                                self._op_device_key: prev_dev,
5757 5758 5759 5760
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5761 5762 5763
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5764 5765
                            },
                        )
5766
                        extra_index_info['index'] += 1
5767 5768 5769
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5770 5771
                                'first_optimize_index'
                            ]
5772 5773 5774 5775
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5776
                        sync_comm_op = block._insert_op_without_sync(
5777
                            index=insert_index + extra_index_info['index'],
5778 5779 5780 5781
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5782
                                self._op_device_key: prev_dev,
5783
                                self._op_role_key: new_op_role,
5784
                                'ring_id': ring_id,
5785 5786
                            },
                        )
5787
                        if int(op_role) == int(self._op_role.Forward):
5788
                            sync_comm_op._set_attr('pipeline_flag', '')
5789
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5790
                        block._insert_op_without_sync(
5791
                            index=index + extra_index_info['index'],
5792
                            type='recv_v2'
5793 5794
                            if not use_mp or is_param
                            else 'partial_recv',
5795 5796 5797 5798
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5799
                                self._op_device_key: cur_dev,
5800 5801 5802
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5803 5804 5805 5806
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5807 5808
                            },
                        )
5809
                        extra_index_info['index'] += 1
5810
                        if use_mp and not is_param:
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5824 5825
                                },
                            )
5826
                            extra_index_info['index'] += 1
5827 5828 5829
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5830 5831
                            "The given value is {}.".format(self.schedule_mode)
                        )
5832

5833 5834 5835 5836
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5837 5838
        block._sync_with_cpp()

5839
    def _insert_loss_scale(self, block):
5840
        """
5841
        Scale the loss corresponding to number of micro-batches.
5842
        """
5843 5844
        if self._num_microbatches == 1:
            return
5845
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5846
            if self._is_loss_grad_op(op):
5847 5848
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5849
                    "but this op is {}".format(op.type)
5850
                )
5851 5852 5853 5854
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5855 5856
                break

5857 5858
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5859 5860
            if not self._is_optimize_op(op):
                continue
5861 5862 5863
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5864 5865
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5866 5867 5868
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5869 5870
                if not core.grad_var_suffix() in name:
                    continue
5871 5872 5873 5874
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5875 5876 5877
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5878 5879 5880 5881
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5882 5883
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5884
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5885 5886
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5887 5888
            return fused_gradient_names

5889 5890 5891
        merged_gradient_names = []
        first_opt_op_idx = None

5892 5893 5894
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5895 5896 5897 5898 5899 5900 5901 5902
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5903
                    continue
5904

5905
            if self._is_backward_op(op) and first_opt_op_idx is None:
5906
                first_opt_op_idx = index + 1
5907 5908
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5909

5910 5911 5912
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5913
                op_role_var = op.attr(self._op_role_var_key)
5914 5915
                if len(op_role_var) == 0:
                    continue
5916 5917
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5918 5919
                    offset = 0
                    param_name = op_role_var[i]
5920 5921 5922 5923
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5924

5925
                    param_grad_name = param_name + core.grad_var_suffix()
5926
                    merged_param_grad_name = param_grad_name + merged_suffix
5927
                    if not block.has_var(merged_param_grad_name):
5928 5929 5930 5931 5932 5933
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5934
                    assert block.has_var(merged_param_grad_name)
5935

5936 5937 5938
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5939
                    block._insert_op(
5940 5941 5942 5943
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5944
                        attrs={
5945 5946 5947
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5948
                            # a trick to run this op once per mini-batch
5949 5950 5951
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5952
                    offset += 1
5953 5954
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5955 5956

                    is_fp16_grad = 'cast_fp16' in grad_name
5957
                    need_cast = is_fp16_grad is not fp16_allreduce
5958 5959 5960 5961 5962 5963

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5964
                        cast_grad_var_name = param_grad_name + '@TMP'
5965
                        cast_grad_var = self._create_var(
5966 5967
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5968
                        cast_grad_var.persistable = False
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5980
                        offset += 1
5981 5982 5983 5984 5985 5986 5987
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5988 5989
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5990 5991
                        },
                    )
5992 5993 5994
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5995 5996
        if not fp16_allreduce:
            return merged_gradient_names
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
6031

6032
        return merged_gradient_names
6033

6034 6035 6036
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
6037
        grad_param_pairs = self._sort_grad_param_by_dtype(
6038 6039
            main_block, grad_param_pairs
        )
6040

6041 6042 6043
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
6044
        cur_size = 0.0
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
6055 6056
                stop_gradient=False,
            )
6057
            real_param = main_block.var(param)
6058 6059
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
6060 6061 6062 6063
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
6064 6065 6066 6067 6068
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
6069
                grad_param_segments.append(
6070 6071
                    ([real_grad], [real_param], [merged_grad_var])
                )
6072
                last_dtype = real_grad.dtype
6073
                cur_size = 0.0
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
6086 6087 6088 6089 6090 6091
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
6092
            # keep the '.cast_fp16' info in the fuse var name
6093 6094 6095 6096 6097 6098 6099 6100 6101
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
6102 6103 6104 6105
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
6106 6107
                stop_gradient=False,
            )
6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
6133
                outputs={"Output": grads, "FusedOutput": fused_grad},
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
6150 6151 6152 6153 6154 6155 6156
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
6157 6158
                },
            )
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
6169
                    "FusedOutput": fused_merged_grad,
6170 6171 6172 6173 6174 6175 6176 6177
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
6178 6179 6180
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
6181 6182 6183 6184 6185 6186 6187 6188 6189
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
6190
            need_cast = is_fp16_grad is not fp16
6191 6192 6193 6194
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
6212 6213 6214 6215 6216 6217 6218
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
6219 6220
                attrs={self._op_role_key: self._op_role.Backward},
            )
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
6249 6250 6251 6252 6253 6254
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

6255
        return fused_merged_gradients, first_opt_op_idx
6256

6257 6258 6259
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

6279 6280 6281
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
6293 6294
                        (op_role_var[i + 1], op_role_var[i])
                    )
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
6308 6309 6310 6311 6312 6313
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
6314 6315 6316 6317
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
6318

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
6349 6350 6351 6352 6353 6354
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
6355

6356 6357
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
6358
        for prog in program_list:
6359 6360 6361 6362 6363 6364
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
6365 6366
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
6367 6368 6369
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
6370
                self._create_vars(new_sub_block, origin_sub_block)
6371
                op._set_attr('sub_block', new_sub_block)
6372 6373 6374

    def _get_device_info(self, block):
        for op in block.ops:
6375 6376
            if not op._has_kernel(op.type):
                continue
6377 6378 6379
            op_device = op.attr(self._op_device_key)
            return op_device

6380 6381 6382
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
6383 6384 6385 6386 6387 6388 6389
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
6390
        for prog in program_list:
6391 6392
            block = prog.block(0)
            for var_name in block.vars:
6393 6394
                if var_name == "double_buffer_0":
                    continue
6395
                var = block.var(var_name)
6396 6397
                if not var.persistable:
                    continue
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
6413 6414 6415 6416 6417 6418
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
6419
                        continue
6420 6421
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
6422 6423
                        self._op_role.Optimize.LRSched
                    ):
6424 6425 6426 6427
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
6428 6429
                            "op {}.".format(var_name, op)
                        )
6430 6431 6432 6433 6434
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
6435 6436
            if not var_name in write_info:
                continue
6437 6438 6439 6440 6441

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
6442
            write_dev_index = int(write_device.split(':')[1])
6443 6444
            all_progs = var_info[var_name]
            for prog in all_progs:
6445 6446
                if prog == write_prog:
                    continue
6447 6448 6449
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6450 6451 6452 6453 6454 6455 6456 6457 6458
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6459 6460 6461

                write_block._insert_op(
                    index=0,
6462
                    type='send_v2',
6463 6464 6465
                    inputs={
                        'X': write_block.var(var_name),
                    },
6466
                    attrs={
6467 6468
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6469 6470
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6471 6472 6473 6474 6475
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6476 6477
                read_block._insert_op(
                    index=0,
6478
                    type='recv_v2',
6479 6480
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6481 6482 6483 6484
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6485 6486
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6487 6488 6489 6490 6491
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6492 6493 6494 6495 6496 6497
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6498
                        self._op_device_key: read_device,
6499 6500
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6501 6502 6503 6504
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6505 6506

    def _is_gradient_clip_op(self, op):
6507 6508 6509
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6510 6511

    def _is_regularization_op(self, op):
6512 6513 6514
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6515

6516 6517
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6518 6519 6520
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6521

6522 6523 6524 6525 6526
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6527
        output_var_to_op = defaultdict(list)
6528
        # A map from var to op which takes it as input.
6529
        input_var_to_op = defaultdict(list)
6530

6531
        for index, op in enumerate(block.ops):
6532
            for var_name in op.input_arg_names:
6533
                input_var_to_op[var_name].append([op, index])
6534
            for var_name in op.output_arg_names:
6535 6536 6537 6538 6539 6540 6541 6542
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6543 6544
        if self.schedule_mode != '1F1B':
            return
6545 6546 6547

        block = program.block(0)

6548
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6549 6550
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6551
            if op.type == recv_type and self._is_backward_op(op):
6552 6553 6554
                backward_recv_index = index
                break

6555
        # last pipeline stage
6556 6557
        if backward_recv_index is None:
            return
6558 6559 6560

        offset = 0
        for index, op in enumerate(list(block.ops)):
6561 6562
            if index >= backward_recv_index:
                break
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6579 6580
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6581
        block._sync_with_cpp()
6582

6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6596 6597 6598 6599
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6600
                backward_insert_index = i
6601 6602 6603 6604 6605 6606
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6626 6627 6628 6629 6630 6631 6632
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6633 6634 6635 6636 6637 6638 6639
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6667 6668
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6669

6670 6671 6672
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6673
        main_block = loss.block
6674
        self.origin_main_block = main_block
6675
        main_program = main_block.program
6676 6677
        if startup_program is None:
            startup_program = default_startup_program()
6678

6679 6680
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6681 6682 6683 6684 6685 6686 6687
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6688 6689
            'mp_degree',
            'mp_rank',
6690 6691
        ]
        for key in required_keys:
6692 6693 6694
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6695 6696 6697 6698 6699 6700 6701 6702
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6703
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6704 6705
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6706 6707

        optimize_ops, params_grads = self._optimizer.minimize(
6708 6709
            loss, startup_program, parameter_list, no_grad_set
        )
6710
        self._param_device_map = self._origin_optimizer._param_device_map
6711

6712 6713 6714 6715
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6716 6717 6718
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6730 6731 6732
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6733 6734
            "another in the order of their ids."
        )
6735
        # Step2: add send and recv ops between section boundaries
6736
        self._insert_sendrecv_ops_for_boundaries(main_block)
6737

6738
        # Step3: split program into sections and add pairs of
6739 6740
        # send and recv ops for data var.
        main_program = main_block.program
6741
        program_list = self._split_program(main_program, device_list)
6742
        for p in program_list:
6743
            self._create_vars(p.global_block(), main_block)
6744

L
lilong12 已提交
6745 6746 6747 6748 6749
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6750 6751
                "stages."
            )
L
lilong12 已提交
6752 6753
        else:
            self.local_rank %= len(device_list)
6754 6755 6756
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6757
        # Step4: Special Case: process persistable vars that exist in
6758
        # multiple sections
6759
        # FIXME
6760 6761
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6762

6763
        # Step5: Add sub blocks for section programs
6764 6765
        self._add_sub_blocks(main_block, program_list)

6766
        place_list = []
6767 6768
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6769 6770 6771 6772
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6773

6774
        # Step6: Split startup program
6775
        new_startup_program = self._split_startup_program(
6776 6777
            startup_program, self.local_rank
        )
6778 6779 6780 6781

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6782
        real_block = program_list[self.local_rank].global_block()
6783 6784
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6785
        if not self.use_sharding:
6786
            # Step7: clear gradients before each mini-batch and
6787 6788 6789 6790 6791
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6792

6793 6794 6795 6796
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6797 6798 6799
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6800 6801 6802 6803 6804

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6805
        main_program._pipeline_opt = {
H
hutuxian 已提交
6806 6807
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6808
            "pipeline_stage": self.local_rank,
6809
            "num_pipeline_stages": len(device_list),
6810
            "schedule_mode": self.schedule_mode,
6811
            "inner_parallelism": len(device_list),
6812 6813
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6814
            "place_id": place_id,
6815
            "sync_steps": -1,
L
lilong12 已提交
6816
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6817 6818
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6819 6820 6821 6822 6823 6824 6825
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6826 6827


M
mapingshuo 已提交
6828 6829
class RecomputeOptimizer(Optimizer):
    """
6830
        :api_attr: Static Graph
S
swtkiwi 已提交
6831

M
mapingshuo 已提交
6832 6833 6834
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6835
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6836 6837 6838
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6839
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6840 6841 6842
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6843
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6844 6845
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6846

M
mapingshuo 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6892
        if framework._non_static_mode():
Z
zhongpu 已提交
6893
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6894 6895
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6896 6897
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6898
        self.enable_offload = False
M
mapingshuo 已提交
6899 6900

    def _set_checkpoints(self, checkpoints):
6901 6902
        """
        Args:
6903
            checkpoints (list): List of Variable or string
6904 6905 6906 6907 6908
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6909 6910
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6911
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6912 6913
        self._checkpoints = checkpoints

6914
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6915 6916 6917
    def _enable_offload(self):
        self.enable_offload = True

6918 6919
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6920
        """
6921
            :api_attr: Static Graph
S
swtkiwi 已提交
6922

M
mapingshuo 已提交
6923 6924 6925 6926
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6927
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6928 6929 6930 6931

        Examples:
            .. code-block:: python

6932
                import paddle
M
mapingshuo 已提交
6933
                import paddle.fluid as fluid
6934

6935
                paddle.enable_static()
M
mapingshuo 已提交
6936 6937 6938 6939 6940 6941
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6942

M
mapingshuo 已提交
6943 6944 6945 6946
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6947

M
mapingshuo 已提交
6948 6949 6950 6951
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6952 6953
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6954
                except NotImplementedError as e:
6955
                    print(e)
M
mapingshuo 已提交
6956 6957
        """
        raise NotImplementedError(
6958 6959
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6992
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6993 6994 6995 6996
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6997
                    no_grad_set=None)
M
mapingshuo 已提交
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
7017 7018
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
7019 7020 7021 7022 7023 7024

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
7025 7026
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
7027 7028 7029 7030 7031 7032 7033 7034

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
7035 7036 7037
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
7064 7065 7066

        return

7067 7068 7069
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
7070 7071 7072 7073 7074 7075 7076 7077
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
7078 7079
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
7080 7081

    def _insert_fetch_op(self, idx, varname):
7082 7083 7084 7085 7086
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
7087 7088 7089

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
7090
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
7091 7092

    def _insert_offload_op(self, idx, varname):
7093 7094 7095 7096 7097
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
7098
        pinned_varname = self.checkpoint_name2pinned_name[varname]
7099
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
7100 7101

    def _insert_sync_op(self, op_idx, checkpoint_name):
7102
        # single stream offload no need sync
J
JZ-LIANG 已提交
7103 7104 7105
        pass

    def _record_fetch_op(self, idx):
7106 7107 7108
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
7109 7110 7111 7112 7113 7114 7115 7116
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
7117 7118 7119 7120 7121
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
7122 7123 7124 7125
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
7126 7127 7128
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
7129 7130 7131 7132 7133 7134 7135
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
7136
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
7151 7152
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
7153 7154 7155

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
7156 7157
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
7158 7159
        last_last_fetch_checkpoint = None

7160
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
7161 7162 7163 7164 7165 7166 7167 7168 7169
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
7170 7171 7172
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
7173
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
7174
                            if input_var != self.sorted_checkpoint_names[0]:
7175 7176 7177
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
7178

7179
                        # should check the current used checkpoint is ths last fetch one
7180 7181 7182 7183 7184
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
7185 7186 7187
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
7188 7189
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
7190 7191 7192 7193
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
7194 7195 7196
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
7197

7198 7199 7200 7201 7202
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
7213
                    logging.debug(
7214 7215
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7216 7217 7218 7219 7220
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
7221 7222 7223 7224 7225
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7226 7227 7228 7229

    def _parse_forward(self):

        self.idx2insertions = {}
7230
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
7231 7232 7233 7234 7235 7236 7237
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
7238
                'idx': -1,
J
JZ-LIANG 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
7248 7249
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
7250 7251
        last_offload_checkpoint = None

7252
        for i, op in enumerate(
7253 7254
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
7255 7256 7257 7258 7259 7260 7261

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
7262 7263 7264 7265 7266
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
7267 7268 7269

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
7270
                        if last_offload_checkpoint is not None:
7271 7272 7273 7274 7275 7276 7277 7278 7279
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
7280
                            else:
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
7294 7295 7296 7297 7298
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
7299 7300 7301 7302
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
7303 7304
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
7318
                    # sync if last checkpoint has not been sync
7319 7320 7321 7322 7323 7324
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
7325 7326 7327
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
7338
            # record checkpoint usage
J
JZ-LIANG 已提交
7339 7340
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
7341 7342 7343
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
7344 7345 7346
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

7347 7348 7349 7350 7351
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
7352 7353 7354
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
7355 7356
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
7357 7358 7359 7360 7361

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
7362 7363
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
7364 7365 7366 7367
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
7368
                    logging.debug(
7369 7370
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7371 7372 7373
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
7374
                    logging.debug(
7375 7376
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7377 7378 7379
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
7380 7381 7382 7383 7384
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7385 7386 7387 7388 7389 7390 7391 7392

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
7393
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
7394 7395 7396 7397 7398 7399
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
7400
        if startup_program is None:
J
JZ-LIANG 已提交
7401
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
7402 7403

        with program_guard(self._main_program, startup_program):
7404 7405 7406 7407 7408 7409 7410 7411 7412 7413
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
7414 7415 7416 7417
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
7418 7419
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
7420
                self.checkpoint_name2pinned_name[
7421 7422
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
7423
                self.checkpoint_name2fetch_name[
7424 7425
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

7439 7440 7441 7442 7443 7444 7445 7446
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7447 7448 7449 7450 7451 7452 7453
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7454 7455
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7456 7457 7458 7459 7460 7461 7462 7463
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
7464

M
mapingshuo 已提交
7465 7466 7467 7468 7469 7470
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
7471 7472


M
mapingshuo 已提交
7473 7474 7475 7476
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7477

M
mapingshuo 已提交
7478 7479
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7480
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7481 7482 7483 7484
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7485
                    no_grad_set=None)
M
mapingshuo 已提交
7486 7487
                print("Finished backward")
        """
7488 7489 7490
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7491

J
Jiabin Yang 已提交
7492
        if framework._non_static_mode():
M
mapingshuo 已提交
7493
            raise NotImplementedError(
7494 7495
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7496 7497 7498 7499

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7500 7501 7502 7503 7504 7505 7506
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7507 7508 7509 7510 7511 7512
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7513 7514
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7515
            else:
7516 7517 7518 7519 7520 7521
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7522 7523 7524 7525 7526

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
7540

M
mapingshuo 已提交
7541 7542 7543 7544 7545
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
7546 7547
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
7548 7549 7550 7551
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7552

M
mapingshuo 已提交
7553 7554
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7555
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7556 7557 7558 7559
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7560
                    no_grad_set=None)
7561

M
mapingshuo 已提交
7562 7563
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7564

M
mapingshuo 已提交
7565 7566 7567
                print("Finished apply_optimize")
        """

7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7580
        assert isinstance(loss, Variable), "The loss should be an Variable."
7581 7582 7583
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
7584
        if framework._non_static_mode():
M
mapingshuo 已提交
7585
            raise NotImplementedError(
7586 7587 7588 7589 7590 7591 7592 7593
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7594

7595 7596 7597
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7598 7599 7600 7601

        return optimize_ops, params_grads


7602
class LookaheadOptimizer:
7603
    r"""
7604
        :api_attr: Static Graph
S
swtkiwi 已提交
7605

M
mapingshuo 已提交
7606 7607 7608 7609
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7610 7611
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7612 7613 7614
    every k training steps as follows:

    .. math::
7615

M
mapingshuo 已提交
7616
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7617

7618
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7619 7620

    Args:
7621
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7622 7623 7624 7625 7626 7627 7628 7629 7630
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7631
            import numpy.random as random
M
mapingshuo 已提交
7632

7633
            paddle.enable_static()
7634

7635 7636 7637 7638
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
7639
            loss = paddle.mean(x=loss)
7640 7641 7642 7643 7644 7645 7646 7647 7648
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7649

7650 7651 7652
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7653

7654 7655
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7656

7657 7658 7659
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7660 7661 7662 7663 7664

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
7665
        if framework._non_static_mode():
Z
zhongpu 已提交
7666
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7667
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7668 7669 7670
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7671
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7682 7683
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7695 7696 7697 7698 7699 7700 7701
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7702 7703 7704 7705 7706 7707
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7708 7709 7710 7711 7712 7713 7714
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7715

7716 7717 7718
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7719

7720 7721
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7722 7723 7724 7725 7726 7727 7728
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7729

7730
            # Add Var alpha to main prog and startup prog
7731 7732 7733 7734 7735 7736 7737
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7738

7739
            # Add Var step
7740 7741 7742 7743 7744 7745 7746
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7747 7748 7749
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
7750 7751 7752
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7753

7754 7755 7756
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7757

7758
            mod = paddle.remainder(step, k)
7759
            with layers.control_flow.Switch() as switch:
7760 7761 7762 7763 7764
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
7765 7766 7767 7768 7769 7770 7771
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
7772 7773 7774
                                slow_var, layers.elementwise_sub(one_var, alpha)
                            ),
                        )
7775 7776 7777 7778
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
7779
        return mini_out
7780 7781


7782
class GradientMergeOptimizer:
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7837 7838
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7839
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7840
        if framework._non_static_mode():
7841 7842 7843
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7844 7845
                "and one-time optimizer.minimize()"
            )
7846

7847 7848 7849 7850
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7851 7852 7853 7854 7855

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7856
        self._optimize_ops = None
7857

7858 7859 7860 7861 7862 7863
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7864 7865 7866 7867 7868 7869 7870 7871
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7872 7873 7874 7875 7876 7877 7878 7879 7880
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7881 7882
            loss, startup_program=startup_program
        )
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7894 7895 7896
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7897 7898 7899 7900 7901 7902
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7903 7904 7905 7906 7907
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7908 7909 7910

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7964 7965

        # Add step var & cond var
7966 7967 7968 7969 7970 7971 7972 7973
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7974

7975 7976 7977
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7978 7979 7980 7981

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7982 7983 7984 7985 7986 7987
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7988 7989

            # cond_var = (step_var == 0)
7990 7991 7992 7993 7994
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7995 7996 7997 7998 7999 8000 8001 8002 8003 8004

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
8005

8006
        # TODO(mapingshuo) support sparse embedding
8007 8008
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
8009
            assert (
8010
                param.type != core.VarDesc.VarType.SELECTED_ROWS
8011 8012
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

8013
            self._remove_op_role_var(param, grad)
8014

8015
        param_to_grad = {k.name: v for (k, v) in params_grads}
8016 8017 8018
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

8019 8020 8021 8022 8023
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
8024
            param_var = main_block.var(param_name)
8025 8026 8027 8028 8029 8030 8031
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
8032
            param_to_gradient_merge[param_name] = gradient_merge_var
8033

8034 8035 8036 8037
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
8049

8050 8051 8052
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
8053
                inputs={'X': grad, 'Y': gradient_merge_var},
8054
                outputs={'Out': gradient_merge_var},
8055 8056 8057 8058 8059
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
8060 8061 8062 8063 8064 8065 8066 8067
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
8068
            op_maker = core.op_proto_and_checker_maker
8069 8070 8071 8072

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
8086

8087 8088 8089 8090 8091 8092
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
8093

8094
            self._optimize_ops = self.inner_optimizer.apply_gradients(
8095 8096
                new_params_grads
            )
8097

8098 8099
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
8100 8101 8102 8103 8104 8105 8106 8107 8108
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
8109 8110 8111 8112 8113 8114

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

8115 8116 8117
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
8118 8119
        assert isinstance(loss, Variable), "The loss should be an Variable."

8120 8121 8122 8123 8124 8125
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
8126

8127 8128 8129
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
8130 8131

        return optimize_ops, params_grads