cifar.py 9.2 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import tarfile
import numpy as np
import six
20
from PIL import Image
K
Kaipeng Deng 已提交
21 22
from six.moves import cPickle as pickle

23
import paddle
K
Kaipeng Deng 已提交
24
from paddle.io import Dataset
25
from paddle.dataset.common import _check_exists_and_download
K
Kaipeng Deng 已提交
26

27
__all__ = []
K
Kaipeng Deng 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

URL_PREFIX = 'https://dataset.bj.bcebos.com/cifar/'
CIFAR10_URL = URL_PREFIX + 'cifar-10-python.tar.gz'
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL = URL_PREFIX + 'cifar-100-python.tar.gz'
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'

MODE_FLAG_MAP = {
    'train10': 'data_batch',
    'test10': 'test_batch',
    'train100': 'train',
    'test100': 'test'
}


class Cifar10(Dataset):
    """
    Implementation of `Cifar-10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_
    dataset, which has 10 categories.

    Args:
49
        data_file (str, optional): Path to data file, can be set None if
50
            :attr:`download` is True. Default None, default data path: ~/.cache/paddle/dataset/cifar
51 52 53 54 55 56
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): transform to perform on image, None for no transform. Default: None.
        download (bool, optional): download dataset automatically if :attr:`data_file` is None. Default True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
57
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
58 59

    Returns:
60
        :ref:`api_paddle_io_Dataset`. An instance of Cifar10 dataset.
K
Kaipeng Deng 已提交
61 62 63 64 65

    Examples:

        .. code-block:: python

66 67
            import itertools
            import paddle.vision.transforms as T
68
            from paddle.vision.datasets import Cifar10
K
Kaipeng Deng 已提交
69 70


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            cifar10 = Cifar10()
            print(len(cifar10))
            # 50000

            for i in range(5):  # only show first 5 images
                img, label = cifar10[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (32, 32) 6


            transform = T.Compose(
                [
                    T.Resize(64),
                    T.ToTensor(),
                    T.Normalize(
                        mean=[0.5, 0.5, 0.5],
                        std=[0.5, 0.5, 0.5],
                        to_rgb=True,
                    ),
                ]
            )

            cifar10_test = Cifar10(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(cifar10_test))
            # 10000

            for img, label in itertools.islice(iter(cifar10_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [3, 64, 64] 3
K
Kaipeng Deng 已提交
106 107 108 109 110 111
    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
112 113
                 download=True,
                 backend=None):
K
Kaipeng Deng 已提交
114 115 116 117
        assert mode.lower() in ['train', 'test', 'train', 'test'], \
            "mode should be 'train10', 'test10', 'train100' or 'test100', but got {}".format(mode)
        self.mode = mode.lower()

118 119 120 121
        if backend is None:
            backend = paddle.vision.get_image_backend()
        if backend not in ['pil', 'cv2']:
            raise ValueError(
122 123
                "Expected backend are one of ['pil', 'cv2'], but got {}".format(
                    backend))
124 125
        self.backend = backend

K
Kaipeng Deng 已提交
126 127 128 129 130
        self._init_url_md5_flag()

        self.data_file = data_file
        if self.data_file is None:
            assert download, "data_file is not set and downloading automatically is disabled"
131 132 133 134
            self.data_file = _check_exists_and_download(data_file,
                                                        self.data_url,
                                                        self.data_md5, 'cifar',
                                                        download)
K
Kaipeng Deng 已提交
135 136 137 138 139 140

        self.transform = transform

        # read dataset into memory
        self._load_data()

141 142
        self.dtype = paddle.get_default_dtype()

K
Kaipeng Deng 已提交
143 144 145 146 147 148 149 150 151 152 153
    def _init_url_md5_flag(self):
        self.data_url = CIFAR10_URL
        self.data_md5 = CIFAR10_MD5
        self.flag = MODE_FLAG_MAP[self.mode + '10']

    def _load_data(self):
        self.data = []
        with tarfile.open(self.data_file, mode='r') as f:
            names = (each_item.name for each_item in f
                     if self.flag in each_item.name)

154 155
            names = sorted(list(names))

K
Kaipeng Deng 已提交
156
            for name in names:
T
tianshuo78520a 已提交
157
                batch = pickle.load(f.extractfile(name), encoding='bytes')
K
Kaipeng Deng 已提交
158 159

                data = batch[six.b('data')]
160 161
                labels = batch.get(six.b('labels'),
                                   batch.get(six.b('fine_labels'), None))
K
Kaipeng Deng 已提交
162 163
                assert labels is not None
                for sample, label in six.moves.zip(data, labels):
164
                    self.data.append((sample, label))
K
Kaipeng Deng 已提交
165 166 167

    def __getitem__(self, idx):
        image, label = self.data[idx]
168
        image = np.reshape(image, [3, 32, 32])
169 170 171
        image = image.transpose([1, 2, 0])

        if self.backend == 'pil':
L
LielinJiang 已提交
172
            image = Image.fromarray(image.astype('uint8'))
K
Kaipeng Deng 已提交
173 174
        if self.transform is not None:
            image = self.transform(image)
175 176

        if self.backend == 'pil':
177
            return image, np.array(label).astype('int64')
178

179
        return image.astype(self.dtype), np.array(label).astype('int64')
K
Kaipeng Deng 已提交
180 181 182 183 184 185 186 187 188 189 190

    def __len__(self):
        return len(self.data)


class Cifar100(Cifar10):
    """
    Implementation of `Cifar-100 <https://www.cs.toronto.edu/~kriz/cifar.html>`_
    dataset, which has 100 categories.

    Args:
191 192 193 194 195 196 197 198
        data_file (str, optional): path to data file, can be set None if
            :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/cifar
        mode (str, optional): Either train or test mode. Default 'train'.
        transform (Callable, optional): transform to perform on image, None for no transform. Default: None.
        download (bool, optional): download dataset automatically if :attr:`data_file` is None. Default True.
        backend (str, optional): Specifies which type of image to be returned:
            PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
            If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend <api_vision_image_get_image_backend>`,
199
            default backend is 'pil'. Default: None.
K
Kaipeng Deng 已提交
200 201

    Returns:
202
        :ref:`api_paddle_io_Dataset`. An instance of Cifar100 dataset.
K
Kaipeng Deng 已提交
203 204 205 206 207

    Examples:

        .. code-block:: python

208 209
            import itertools
            import paddle.vision.transforms as T
210
            from paddle.vision.datasets import Cifar100
K
Kaipeng Deng 已提交
211 212


213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
            cifar100 = Cifar100()
            print(len(cifar100))
            # 50000

            for i in range(5):  # only show first 5 images
                img, label = cifar100[i]
                # do something with img and label
                print(type(img), img.size, label)
                # <class 'PIL.Image.Image'> (32, 32) 19


            transform = T.Compose(
                [
                    T.Resize(64),
                    T.ToTensor(),
                    T.Normalize(
                        mean=[0.5, 0.5, 0.5],
                        std=[0.5, 0.5, 0.5],
                        to_rgb=True,
                    ),
                ]
            )

            cifar100_test = Cifar100(
                mode="test",
                transform=transform,  # apply transform to every image
                backend="cv2",  # use OpenCV as image transform backend
            )
            print(len(cifar100_test))
            # 10000

            for img, label in itertools.islice(iter(cifar100_test), 5):  # only show first 5 images
                # do something with img and label
                print(type(img), img.shape, label)
                # <class 'paddle.Tensor'> [3, 64, 64] 49
K
Kaipeng Deng 已提交
248 249 250 251 252 253
    """

    def __init__(self,
                 data_file=None,
                 mode='train',
                 transform=None,
254 255 256 257
                 download=True,
                 backend=None):
        super(Cifar100, self).__init__(data_file, mode, transform, download,
                                       backend)
K
Kaipeng Deng 已提交
258 259 260 261 262

    def _init_url_md5_flag(self):
        self.data_url = CIFAR100_URL
        self.data_md5 = CIFAR100_MD5
        self.flag = MODE_FLAG_MAP[self.mode + '100']