test_imperative_mnist.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from test_imperative_base import new_program_scope
19
from utils import DyGraphProgramDescTracerTestHelper
20 21 22 23

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
24
from paddle.fluid.framework import _test_eager_guard
25
from paddle.fluid.optimizer import SGDOptimizer
26
from paddle.nn import Linear
27 28


M
minqiyang 已提交
29
class SimpleImgConvPool(fluid.dygraph.Layer):
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        pool_size,
        pool_stride,
        pool_padding=0,
        pool_type='max',
        global_pooling=False,
        conv_stride=1,
        conv_padding=0,
        conv_dilation=1,
        conv_groups=1,
        act=None,
        use_cudnn=False,
        param_attr=None,
        bias_attr=None,
    ):
49
        super().__init__()
M
minqiyang 已提交
50

51 52 53 54
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
55 56 57 58
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
59
            weight_attr=None,
60 61
            bias_attr=None,
        )
W
wangzhen38 已提交
62 63 64 65
        self._pool2d = paddle.nn.MaxPool2D(
            kernel_size=pool_size,
            stride=pool_stride,
            padding=pool_padding,
66
        )
67

M
minqiyang 已提交
68
    def forward(self, inputs):
M
minqiyang 已提交
69 70 71
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
72 73


M
minqiyang 已提交
74
class MNIST(fluid.dygraph.Layer):
75
    def __init__(self):
76
        super().__init__()
77

78 79 80
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            1, 20, 5, 2, 2, act="relu"
        )
81

82 83 84
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            20, 50, 5, 2, 2, act="relu"
        )
M
minqiyang 已提交
85

86
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
87
        SIZE = 10
88 89 90 91
        scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
92 93
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(mean=0.0, std=scale)
94 95
            ),
        )
M
minqiyang 已提交
96 97 98 99

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
100
        x = paddle.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
101
        x = self._fc(x)
102
        x = paddle.nn.functional.softmax(x)
M
minqiyang 已提交
103 104 105 106
        return x


class TestImperativeMnist(unittest.TestCase):
107 108 109 110 111 112 113 114 115
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

116
    def func_test_mnist_float32(self):
117
        seed = 90
M
minqiyang 已提交
118
        epoch_num = 1
119 120 121
        batch_size = 128
        batch_num = 50

122 123
        traced_layer = None

M
minqiyang 已提交
124
        with fluid.dygraph.guard():
125 126 127
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

128
            mnist = MNIST()
129 130 131
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=mnist.parameters()
            )
132 133 134

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
135 136 137 138 139 140 141
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True,
                ),
                places=fluid.CPUPlace(),
            )
142

M
minqiyang 已提交
143
            mnist.train()
144
            dy_param_init_value = {}
145

146 147
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
148
            for epoch in range(epoch_num):
149 150 151 152 153 154
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
155
                    label.stop_gradient = True
156
                    cost = mnist(img)
157

158 159 160 161
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

162 163 164
                    loss = paddle.nn.functional.cross_entropy(
                        cost, label, reduction='none', use_softmax=False
                    )
165
                    avg_loss = paddle.mean(loss)
M
minqiyang 已提交
166

L
lujun 已提交
167
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
168 169 170

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
171
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
172

L
lujun 已提交
173
                    avg_loss.backward()
M
minqiyang 已提交
174 175 176 177 178
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
179
                        dy_param_value[param.name] = param.numpy()
180 181 182 183 184

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

185 186 187 188 189
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
190

191
            mnist = MNIST()
M
minqiyang 已提交
192
            sgd = SGDOptimizer(learning_rate=1e-3)
193 194 195 196 197 198 199 200 201
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True,
            )

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
202 203
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
204 205 206
            loss = paddle.nn.functional.cross_entropy(
                cost, label, reduction='none', use_softmax=False
            )
207
            avg_loss = paddle.mean(loss)
M
minqiyang 已提交
208
            sgd.minimize(avg_loss)
209 210 211 212

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
213
            for param in mnist.parameters():
214 215
                static_param_name_list.append(param.name)

216 217 218 219
            out = exe.run(
                fluid.default_startup_program(),
                fetch_list=static_param_name_list,
            )
220 221 222 223

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
224 225
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
226 227
                    if batch_id >= batch_num:
                        break
228 229 230 231 232 233 234 235
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28) for x in data]
                    ).astype('float32')
                    y_data = (
                        np.array([x[1] for x in data])
                        .astype('int64')
                        .reshape([batch_size, 1])
                    )
M
minqiyang 已提交
236 237 238

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
239 240 241 242

                    if traced_layer is not None:
                        traced_layer([static_x_data])

243 244 245 246 247
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data, "label": y_data},
                        fetch_list=fetch_list,
                    )
M
minqiyang 已提交
248 249 250 251

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
252 253 254
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i
                        ]
M
minqiyang 已提交
255

256 257 258
        np.testing.assert_allclose(
            dy_x_data.all(), static_x_data.all(), rtol=1e-05
        )
259

260
        for key, value in static_param_init_value.items():
261 262 263
            np.testing.assert_allclose(
                value, dy_param_init_value[key], rtol=1e-05
            )
M
minqiyang 已提交
264

265
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
M
minqiyang 已提交
266

267
        for key, value in static_param_value.items():
268 269 270
            np.testing.assert_allclose(
                value, dy_param_value[key], rtol=1e-05, atol=1e-05
            )
271

272 273 274 275 276
    def test_mnist_float32(self):
        with _test_eager_guard():
            self.func_test_mnist_float32()
        self.func_test_mnist_float32()

277 278

if __name__ == '__main__':
H
hong 已提交
279
    paddle.enable_static()
280
    unittest.main()