slice_op.cc 19.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
16

W
whs 已提交
17
#include <algorithm>
18
#include <memory>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

H
hong 已提交
22
#include "paddle/phi/kernels/funcs/slice_utils.h"
W
whs 已提交
23 24 25 26

namespace paddle {
namespace operators {

27
using Tensor = phi::DenseTensor;
W
whs 已提交
28 29 30 31 32

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
36

37
    // Case 1: Special treatment when input is a tensor array.
38 39 40
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
41 42
      PADDLE_ENFORCE_EQ(axes.size(),
                        1,
43 44 45 46 47 48 49 50 51 52
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
53 54
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
55 56 57 58 59 60
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
61 62

    // Case 2: input is a tensor.
W
whs 已提交
63
    auto in_dims = ctx->GetInputDim("Input");
64 65
    PADDLE_ENFORCE_LT(in_dims.size(),
                      7,
T
Thunderbrook 已提交
66 67
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
68
    framework::DDim out_dims(in_dims);
69

W
whs 已提交
70 71
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
72
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
73
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
74 75 76 77 78 79
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

80 81 82 83
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

84
    if (ctx->HasInputs("StartsTensorList")) {
85
      starts_size = ctx->Inputs("StartsTensorList").size();
86 87
      PADDLE_ENFORCE_GT(starts_size,
                        0,
T
Thunderbrook 已提交
88 89
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
90 91
    }
    if (ctx->HasInputs("EndsTensorList")) {
92
      ends_size = ctx->Inputs("EndsTensorList").size();
93 94
      PADDLE_ENFORCE_GT(ends_size,
                        0,
95 96
                        platform::errors::InvalidArgument(
                            "EndsTensorList size can't be zero"));
97 98
    }

99
    if (!ctx->HasInput("StartsTensor")) {
100
      PADDLE_ENFORCE_EQ(
101 102
          starts_size,
          axes.size(),
T
Thunderbrook 已提交
103 104
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
105
    }
106
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
107
      PADDLE_ENFORCE_EQ(
108 109
          ends_size,
          axes.size(),
T
Thunderbrook 已提交
110 111
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
112
    }
113 114 115 116 117
    for (auto &axis : axes) {
      if (axis < 0) {
        axis = std::max(0, axis + in_dims.size());
      }
    }
118 119
    phi::funcs::CheckAndUpdateSliceAttrs<int>(
        in_dims, axes, &starts, &ends, nullptr, &infer_flags);
H
Hongyu Liu 已提交
120

121 122
    auto slice_dims = phi::funcs::GetSliceDims<int>(
        in_dims, axes, starts, ends, nullptr, &infer_flags);
123
    if (ctx->IsRuntime()) {
124 125
      out_dims = phi::funcs::GetDecreasedDims<int>(
          slice_dims, decrease_axis, &infer_flags);
126
    } else {
H
hong 已提交
127 128
      out_dims =
          phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
129
    }
130

W
whs 已提交
131
    ctx->SetOutputDim("Out", out_dims);
132
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
133 134
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
135 136 137 138
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
139
      const framework::ExecutionContext &ctx) const override {
140 141 142 143
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
144 145
          in_tensor.IsInitialized(),
          true,
146 147
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
148 149
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
150 151 152
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
153
      }
154 155 156 157 158 159 160 161 162 163 164

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");

      if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
165
            phi::vectorize(ctx.Input<phi::DenseTensor>("Input")->dims()),
166
            dnnl::memory::data_type::f32,
167
            ctx.Input<phi::DenseTensor>("Input")->format());
168
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
169 170
          return framework::OpKernelType(input_data_type,
                                         ctx.GetPlace(),
171 172 173 174 175
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

176 177
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
178
    }
179
    return framework::OpKernelType(
180
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
181
  }
182

183
  framework::OpKernelType GetKernelTypeForVar(
184 185
      const std::string &var_name,
      const Tensor &tensor,
186 187 188 189 190 191 192
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
193 194
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
W
whs 已提交
195 196 197
  }
};

198 199 200 201 202 203
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
R
Ruibiao Chen 已提交
204 205
    auto not_decrease =
        paddle::get<std::vector<int>>(decrease_axis).size() == 0;
206 207 208 209 210 211 212 213 214 215 216 217
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
218 219 220
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
246 247 248 249 250 251 252
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
253 254 255 256 257
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
258
    AddAttr<std::vector<int>>(
259 260
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
261 262
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
263 264 265 266 267
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
268
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
269
end dimension for each axis in the list of axes, it uses this information
270 271
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
272
of that dimension. If the value passed to start or end is larger than
273 274
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
275
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
276 277
Following examples will explain how slice works:

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
296 297 298 299
)DOC");
  }
};

300 301 302 303
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

304
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
305
    PADDLE_ENFORCE_EQ(
306 307
        ctx->HasInput("Input"),
        true,
T
Thunderbrook 已提交
308
        platform::errors::InvalidArgument("Input should not be null"));
309 310
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")),
                      true,
T
Thunderbrook 已提交
311 312
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
313 314 315 316 317 318 319 320
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
321 322 323 324 325 326
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
327

328
  framework::OpKernelType GetExpectedKernelType(
329
      const framework::ExecutionContext &ctx) const override {
330 331 332 333 334 335 336 337 338 339
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
340
          phi::vectorize(
341 342
              ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"))
                  ->dims()),
343
          dnnl::memory::data_type::f32,
344
          ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"))->format());
345
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
346 347
        return framework::OpKernelType(input_data_type,
                                       ctx.GetPlace(),
348 349 350 351 352
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
353
  }
354

355
  framework::OpKernelType GetKernelTypeForVar(
356 357
      const std::string &var_name,
      const Tensor &tensor,
358 359 360 361 362 363 364
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
365 366
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
367
  }
368 369
};

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
385 386
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
387
 public:
H
hong 已提交
388
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
389 390

 protected:
391
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
392
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
393 394 395 396 397 398 399 400 401 402 403 404
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
405 406 407
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
408 409 410 411
    bind->SetType("slice_grad");
  }
};

412 413 414 415 416 417
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
418
  void Apply(GradOpPtr<T> bind) const override {
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

438
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
439
                                    "Input");
440

W
whs 已提交
441 442 443 444
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
445 446 447
REGISTER_OPERATOR(slice,
                  ops::SliceOp,
                  ops::SliceOpMaker,
H
hong 已提交
448
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
449 450
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
451 452
REGISTER_OPERATOR(slice_grad,
                  ops::SliceOpGrad,
453 454
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
455
                  ops::SliceOpGradNoNeedBufferVarsInferer,
456
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
457 458

REGISTER_OP_CPU_KERNEL(
459
    slice,
L
Leo Chen 已提交
460 461 462 463 464 465 466 467
    ops::SliceKernel<phi::CPUContext, bool>,
    ops::SliceKernel<phi::CPUContext, int>,
    ops::SliceKernel<phi::CPUContext, int64_t>,
    ops::SliceKernel<phi::CPUContext, float>,
    ops::SliceKernel<phi::CPUContext, double>,
    ops::SliceKernel<phi::CPUContext, paddle::platform::complex<float>>,
    ops::SliceKernel<phi::CPUContext, paddle::platform::complex<double>>,
    ops::SliceKernel<phi::CPUContext, paddle::platform::bfloat16>);
468 469

REGISTER_OP_CPU_KERNEL(
470
    slice_grad,
L
Leo Chen 已提交
471 472 473 474 475 476 477 478
    ops::SliceGradKernel<phi::CPUContext, bool>,
    ops::SliceGradKernel<phi::CPUContext, int>,
    ops::SliceGradKernel<phi::CPUContext, int64_t>,
    ops::SliceGradKernel<phi::CPUContext, float>,
    ops::SliceGradKernel<phi::CPUContext, double>,
    ops::SliceGradKernel<phi::CPUContext, paddle::platform::complex<float>>,
    ops::SliceGradKernel<phi::CPUContext, paddle::platform::complex<double>>,
    ops::SliceGradKernel<phi::CPUContext, paddle::platform::bfloat16>);
479 480

REGISTER_OP_CUDA_KERNEL(
481
    slice,
L
Leo Chen 已提交
482 483 484 485 486 487 488 489 490
    ops::SliceKernel<phi::GPUContext, bool>,
    ops::SliceKernel<phi::GPUContext, float>,
    ops::SliceKernel<phi::GPUContext, double>,
    ops::SliceKernel<phi::GPUContext, int>,
    ops::SliceKernel<phi::GPUContext, int64_t>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::float16>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::bfloat16>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::complex<float>>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::complex<double>>);
491 492

REGISTER_OP_CUDA_KERNEL(
493
    slice_grad,
L
Leo Chen 已提交
494 495 496 497 498 499 500 501 502
    ops::SliceGradKernel<phi::GPUContext, bool>,
    ops::SliceGradKernel<phi::GPUContext, float>,
    ops::SliceGradKernel<phi::GPUContext, double>,
    ops::SliceGradKernel<phi::GPUContext, int>,
    ops::SliceGradKernel<phi::GPUContext, int64_t>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::float16>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::bfloat16>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::complex<float>>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::complex<double>>);