softmax_mkldnn_op.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/op_registry.h"
J
Jacek Czaja 已提交
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17
#include "paddle/phi/kernels/funcs/axis_utils.h"
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

26 27 28 29 30 31
using dnnl::memory;  // Note: paddle has also "memory" namespace
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::softmax_backward;
using dnnl::softmax_forward;
using dnnl::stream;
J
Jacek Czaja 已提交
32 33
using platform::to_void_cast;

34
template <typename T>
35
class SoftmaxMKLDNNHandler
36 37
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::softmax_forward,
                                               dnnl::softmax_backward> {
J
Jacek Czaja 已提交
38
 public:
39
  SoftmaxMKLDNNHandler(const dnnl::engine mkldnn_engine,
40
                       platform::Place cpu_place, const Tensor* input,
41
                       Tensor* output, const int axis)
42 43 44
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::softmax_forward,
                                          dnnl::softmax_backward>(mkldnn_engine,
                                                                  cpu_place) {
45 46 47 48 49
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        platform::errors::InvalidArgument(
            "The shape of input and output tensor must be identical."));

50 51 52 53 54 55
    auto softmax_tz = phi::vectorize(input->dims());
    auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(),
                           input->format());

    this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md,
                                            axis);
56
  }
J
Jacek Czaja 已提交
57

58
  SoftmaxMKLDNNHandler(const framework::ExecutionContext& ctx,
59
                       const dnnl::engine mkldnn_engine,
60 61 62
                       platform::Place cpu_place, const Tensor* out,
                       const Tensor* out_grad, Tensor* in_x_grad,
                       const std::string& unique_name)
63 64 65
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::softmax_forward,
                                          dnnl::softmax_backward>(mkldnn_engine,
                                                                  cpu_place) {
66 67 68 69 70 71 72 73
    PADDLE_ENFORCE_EQ(out_grad->dims(), in_x_grad->dims(),
                      platform::errors::InvalidArgument(
                          "The shape of softmax_grad's input "
                          "and output must be identical, but shapes differ, "
                          "out_grad: %s in_grad: %s",
                          out_grad->dims(), in_x_grad->dims()));

    auto dims = out_grad->dims();  // input and output share the same shape
74 75
    const int axis =
        phi::funcs::CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
76 77

    this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring,
78 79 80
                                            out->mem_desc(), axis);
    this->AcquireBackwardPrimitiveDescriptor(out_grad->mem_desc(),
                                             out->mem_desc(), axis);
81
  }
J
Jacek Czaja 已提交
82
};
83 84 85 86 87 88

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
89 90
    const auto& mkldnn_engine = dev_ctx.GetEngine();

91 92
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
93
    bool is_inplaced = input->IsSharedBufferWith(*output);
F
fengjiayi 已提交
94

95 96
    const int axis =
        phi::funcs::CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size());
97

98 99
    SoftmaxMKLDNNHandler<T> handler(mkldnn_engine, ctx.GetPlace(), input,
                                    output, axis);
100

101
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
102
    // For Inplace src and and dst are the same memory object
103 104 105 106 107 108 109
    std::shared_ptr<dnnl::memory> softmax_dst_memory_p = nullptr;
    if (is_inplaced) {
      softmax_dst_memory_p = softmax_src_memory_p;
      output->mutable_data<T>(ctx.GetPlace());
    } else {
      softmax_dst_memory_p = handler.AcquireDstMemory(output);
    }
110 111
    auto softmax_p = handler.AcquireForwardPrimitive();

112
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
113 114
    softmax_p->execute(astream, {{DNNL_ARG_SRC, *softmax_src_memory_p},
                                 {DNNL_ARG_DST, *softmax_dst_memory_p}});
A
Adam 已提交
115
    astream.wait();
J
Jacek Czaja 已提交
116 117 118

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
119
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
120
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
121 122
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
123
    }
124

125
    output->set_mem_desc(softmax_dst_memory_p->get_desc());
126 127 128
  }
};

J
Jacek Czaja 已提交
129 130 131 132
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
133 134 135
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL SoftmaxGrad must use CPUPlace"));
J
Jacek Czaja 已提交
136
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
137
    const auto& mkldnn_engine = dev_ctx.GetEngine();
J
Jacek Czaja 已提交
138
    const Tensor* output = ctx.Input<Tensor>("Out");
139 140
    auto* out_grad = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* in_x_grad = ctx.template Output<Tensor>(framework::GradVarName("X"));
F
fengjiayi 已提交
141

142
    SoftmaxMKLDNNHandler<T> handler(ctx, mkldnn_engine, ctx.GetPlace(), output,
143
                                    out_grad, in_x_grad, ctx.InputName("Out"));
144

145
    auto dst_memory_p = handler.AcquireDstMemory(output);
146 147
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(in_x_grad);
J
Jacek Czaja 已提交
148

A
Adam 已提交
149
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
150

151
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
152 153 154
    softmax_bwd_p->execute(astream, {{DNNL_ARG_DST, *dst_memory_p},
                                     {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                     {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
155
    astream.wait();
156

157
    in_x_grad->set_mem_desc(diff_src_memory_p->get_desc());
J
Jacek Czaja 已提交
158 159
  }
};
160 161 162 163 164 165
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
166 167
                   ops::SoftmaxMKLDNNKernel<float>,
                   ops::SoftmaxMKLDNNKernel<paddle::platform::bfloat16>);
J
Jacek Czaja 已提交
168 169
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);