rnn_impl.py 34.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import copy

17
import paddle
18
from paddle.fluid import layers, unique_name
19
from paddle.fluid.dygraph import Layer
20
from paddle.fluid.dygraph.layer_object_helper import LayerObjectHelper
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from paddle.fluid.layers.control_flow import StaticRNN

__all__ = ['BasicGRUUnit', 'basic_gru', 'BasicLSTMUnit', 'basic_lstm']


class BasicGRUUnit(Layer):
    """
    ****
    BasicGRUUnit class, using basic operators to build GRU
    The algorithm can be described as the equations below.

        .. math::
            u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u)

            r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r)

            m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    Args:
        name_scope(string) : The name scope used to identify parameters and biases
        hidden_size (integer): The hidden size used in the Unit.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of GRU unit.
51
            If it is set to None or one attribute of ParamAttr, gru_unit will
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        dtype(string): data type used in this unit

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import BasicGRUUnit

            input_size = 128
            hidden_size = 256
            input = layers.data( name = "input", shape = [-1, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')

            gru_unit = BasicGRUUnit( "gru_unit", hidden_size )

            new_hidden = gru_unit( input, pre_hidden )

    """

78 79 80 81 82 83 84 85 86 87
    def __init__(
        self,
        name_scope,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        dtype='float32',
    ):
88
        super().__init__(name_scope, dtype)
89
        # reserve old school _full_name and _helper for static graph save load
90 91 92
        self._full_name = unique_name.generate(
            name_scope + "/" + self.__class__.__name__
        )
93
        self._helper = LayerObjectHelper(self._full_name)
94 95 96 97 98

        self._name = name_scope
        self._hiden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
99 100
        self._gate_activation = gate_activation or paddle.nn.functional.sigmoid
        self._activation = activation or paddle.tanh
101 102 103 104
        self._dtype = dtype

    def _build_once(self, input, pre_hidden):
        self._input_size = input.shape[-1]
105
        assert self._input_size > 0
106

107 108 109 110 111 112 113 114 115
        if self._param_attr is not None and self._param_attr.name is not None:
            gate_param_attr = copy.deepcopy(self._param_attr)
            candidate_param_attr = copy.deepcopy(self._param_attr)
            gate_param_attr.name += "_gate"
            candidate_param_attr.name += "_candidate"
        else:
            gate_param_attr = self._param_attr
            candidate_param_attr = self._param_attr

116
        self._gate_weight = self.create_parameter(
117
            attr=gate_param_attr,
118
            shape=[self._input_size + self._hiden_size, 2 * self._hiden_size],
119 120
            dtype=self._dtype,
        )
121 122

        self._candidate_weight = self.create_parameter(
123
            attr=candidate_param_attr,
124
            shape=[self._input_size + self._hiden_size, self._hiden_size],
125 126
            dtype=self._dtype,
        )
127

128 129 130 131 132 133 134 135 136
        if self._bias_attr is not None and self._bias_attr.name is not None:
            gate_bias_attr = copy.deepcopy(self._bias_attr)
            candidate_bias_attr = copy.deepcopy(self._bias_attr)
            gate_bias_attr.name += "_gate"
            candidate_bias_attr.name += "_candidate"
        else:
            gate_bias_attr = self._bias_attr
            candidate_bias_attr = self._bias_attr

137 138 139 140 141 142 143 144 145 146 147 148
        self._gate_bias = self.create_parameter(
            attr=gate_bias_attr,
            shape=[2 * self._hiden_size],
            dtype=self._dtype,
            is_bias=True,
        )
        self._candidate_bias = self.create_parameter(
            attr=candidate_bias_attr,
            shape=[self._hiden_size],
            dtype=self._dtype,
            is_bias=True,
        )
149 150 151 152 153 154 155 156 157 158 159 160 161

    def forward(self, input, pre_hidden):
        concat_input_hidden = layers.concat([input, pre_hidden], 1)

        gate_input = layers.matmul(x=concat_input_hidden, y=self._gate_weight)

        gate_input = layers.elementwise_add(gate_input, self._gate_bias)

        gate_input = self._gate_activation(gate_input)
        r, u = layers.split(gate_input, num_or_sections=2, dim=1)

        r_hidden = r * pre_hidden

162 163 164
        candidate = layers.matmul(
            layers.concat([input, r_hidden], 1), self._candidate_weight
        )
165 166 167 168 169 170 171 172
        candidate = layers.elementwise_add(candidate, self._candidate_bias)

        c = self._activation(candidate)
        new_hidden = u * pre_hidden + (1 - u) * c

        return new_hidden


173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
def basic_gru(
    input,
    init_hidden,
    hidden_size,
    num_layers=1,
    sequence_length=None,
    dropout_prob=0.0,
    bidirectional=False,
    batch_first=True,
    param_attr=None,
    bias_attr=None,
    gate_activation=None,
    activation=None,
    dtype='float32',
    name='basic_gru',
):
189
    r"""
T
tianshuo78520a 已提交
190
    GRU implementation using basic operator, supports multiple layers and bidirectional gru.
191 192 193 194 195 196 197 198 199 200 201

    .. math::
            u_t & = actGate(W_ux xu_{t} + W_uh h_{t-1} + b_u)

            r_t & = actGate(W_rx xr_{t} + W_rh h_{t-1} + b_r)

            m_t & = actNode(W_cx xm_t + W_ch dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    Args:
202 203
        input (Variable): GRU input tensor,
                       if batch_first = False, shape should be ( seq_len x batch_size x input_size )
204 205 206 207 208 209 210 211 212 213 214
                       if batch_first = True, shape should be ( batch_size x seq_len x hidden_size )
        init_hidden(Variable|None): The initial hidden state of the GRU
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
                       and can be reshaped to tensor with ( num_layers x 2 x batch_size x hidden_size) to use.
                       If it's None, it will be set to all 0.
        hidden_size (int): Hidden size of the GRU
        num_layers (int): The total number of layers of the GRU
        sequence_length (Variabe|None): A Tensor (shape [batch_size]) stores each real length of each instance,
                        This tensor will be convert to a mask to mask the padding ids
                        If it's None means NO padding ids
215
        dropout_prob(float|0.0): Dropout prob, dropout ONLY works after rnn output of each layers,
216 217
                             NOT between time steps
        bidirectional (bool|False): If it is bidirectional
218 219 220 221 222
        batch_first (bool|True): The shape format of the input and output tensors. If true,
            the shape format should be :attr:`[batch_size, seq_len, hidden_size]`. If false,
            the shape format should be :attr:`[seq_len, batch_size, hidden_size]`. By default
            this function accepts input and emits output in batch-major form to be consistent
            with most of data format, though a bit less efficient because of extra transposes.
223 224 225 226 227 228 229
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of GRU unit.
230
            If it is set to None or one attribute of ParamAttr, gru_unit will
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        dtype(string): data type used in this unit
        name(string): name used to identify parameters and biases

    Returns:
        rnn_out(Tensor),last_hidden(Tensor)
            - rnn_out is result of GRU hidden, with shape (seq_len x batch_size x hidden_size) \
              if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
            - last_hidden is the hidden state of the last step of GRU \
              shape is ( num_layers x batch_size x hidden_size ) \
              if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size),
              can be reshaped to a tensor with shape( num_layers x 2 x batch_size x hidden_size)

    Examples:
        .. code-block:: python
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import basic_gru

            batch_size = 20
            input_size = 128
            hidden_size = 256
            num_layers = 2
            dropout = 0.5
            bidirectional = True
            batch_first = False

            input = layers.data( name = "input", shape = [-1, batch_size, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')
            sequence_length = layers.data( name="sequence_length", shape=[-1], dtype='int32')


            rnn_out, last_hidden = basic_gru( input, pre_hidden, hidden_size, num_layers = num_layers, \
                    sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \
                    batch_first = batch_first)

    """

    fw_unit_list = []

    for i in range(num_layers):
        new_name = name + "_layers_" + str(i)
278 279 280 281 282 283 284 285 286 287
        if param_attr is not None and param_attr.name is not None:
            layer_param_attr = copy.deepcopy(param_attr)
            layer_param_attr.name += "_fw_w_" + str(i)
        else:
            layer_param_attr = param_attr
        if bias_attr is not None and bias_attr.name is not None:
            layer_bias_attr = copy.deepcopy(bias_attr)
            layer_bias_attr.name += "_fw_b_" + str(i)
        else:
            layer_bias_attr = bias_attr
288
        fw_unit_list.append(
289 290 291 292 293 294 295 296 297 298
            BasicGRUUnit(
                new_name,
                hidden_size,
                layer_param_attr,
                layer_bias_attr,
                gate_activation,
                activation,
                dtype,
            )
        )
299 300 301 302 303
    if bidirectional:
        bw_unit_list = []

        for i in range(num_layers):
            new_name = name + "_reverse_layers_" + str(i)
304 305 306 307 308 309 310 311 312 313 314
            if param_attr is not None and param_attr.name is not None:
                layer_param_attr = copy.deepcopy(param_attr)
                layer_param_attr.name += "_bw_w_" + str(i)
            else:
                layer_param_attr = param_attr
            if bias_attr is not None and bias_attr.name is not None:
                layer_bias_attr = copy.deepcopy(bias_attr)
                layer_bias_attr.name += "_bw_b_" + str(i)
            else:
                layer_bias_attr = bias_attr

315
            bw_unit_list.append(
316 317 318 319 320 321 322 323 324 325
                BasicGRUUnit(
                    new_name,
                    hidden_size,
                    layer_param_attr,
                    layer_bias_attr,
                    gate_activation,
                    activation,
                    dtype,
                )
            )
326 327 328 329 330 331 332

    if batch_first:
        input = layers.transpose(input, [1, 0, 2])

    mask = None
    if sequence_length:
        max_seq_len = layers.shape(input)[0]
333 334 335
        mask = layers.sequence_mask(
            sequence_length, maxlen=max_seq_len, dtype='float32'
        )
336 337 338 339 340 341 342
        mask = layers.transpose(mask, [1, 0])

    direc_num = 1
    if bidirectional:
        direc_num = 2
    if init_hidden:
        init_hidden = layers.reshape(
343 344
            init_hidden, shape=[num_layers, direc_num, -1, hidden_size]
        )
345

346 347 348
    def get_single_direction_output(
        rnn_input, unit_list, mask=None, direc_index=0
    ):
349 350 351 352 353 354 355 356 357 358 359
        rnn = StaticRNN()
        with rnn.step():
            step_input = rnn.step_input(rnn_input)

            if mask:
                step_mask = rnn.step_input(mask)

            for i in range(num_layers):
                if init_hidden:
                    pre_hidden = rnn.memory(init=init_hidden[i, direc_index])
                else:
360 361 362 363 364
                    pre_hidden = rnn.memory(
                        batch_ref=rnn_input,
                        shape=[-1, hidden_size],
                        ref_batch_dim_idx=1,
                    )
365 366 367 368 369

                new_hidden = unit_list[i](step_input, pre_hidden)

                if mask:
                    new_hidden = layers.elementwise_mul(
370 371 372 373
                        new_hidden, step_mask, axis=0
                    ) - layers.elementwise_mul(
                        pre_hidden, (step_mask - 1), axis=0
                    )
374 375 376 377 378
                rnn.update_memory(pre_hidden, new_hidden)

                rnn.step_output(new_hidden)

                step_input = new_hidden
379
                if dropout_prob is not None and dropout_prob > 0.0:
380 381
                    step_input = layers.dropout(
                        step_input,
382 383
                        dropout_prob=dropout_prob,
                    )
384 385 386 387 388 389 390 391 392 393 394 395 396

            rnn.step_output(step_input)

        rnn_out = rnn()

        last_hidden_array = []
        rnn_output = rnn_out[-1]
        for i in range(num_layers):
            last_hidden = rnn_out[i]
            last_hidden = last_hidden[-1]
            last_hidden_array.append(last_hidden)

        last_hidden_output = layers.concat(last_hidden_array, axis=0)
397 398 399
        last_hidden_output = layers.reshape(
            last_hidden_output, shape=[num_layers, -1, hidden_size]
        )
400 401 402 403

        return rnn_output, last_hidden_output
        # seq_len, batch_size, hidden_size

404 405 406
    fw_rnn_out, fw_last_hidden = get_single_direction_output(
        input, fw_unit_list, mask, direc_index=0
    )
407 408 409 410 411 412

    if bidirectional:
        bw_input = layers.reverse(input, axis=[0])
        bw_mask = None
        if mask:
            bw_mask = layers.reverse(mask, axis=[0])
413 414 415
        bw_rnn_out, bw_last_hidden = get_single_direction_output(
            bw_input, bw_unit_list, bw_mask, direc_index=1
        )
416 417 418 419 420 421 422

        bw_rnn_out = layers.reverse(bw_rnn_out, axis=[0])

        rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2)
        last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1)

        last_hidden = layers.reshape(
423 424
            last_hidden, shape=[num_layers * direc_num, -1, hidden_size]
        )
425 426 427 428 429 430 431 432 433 434

        if batch_first:
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])
        return rnn_out, last_hidden
    else:

        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden

        if batch_first:
435
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])
436 437 438 439

        return rnn_out, last_hidden


440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
def basic_lstm(
    input,
    init_hidden,
    init_cell,
    hidden_size,
    num_layers=1,
    sequence_length=None,
    dropout_prob=0.0,
    bidirectional=False,
    batch_first=True,
    param_attr=None,
    bias_attr=None,
    gate_activation=None,
    activation=None,
    forget_bias=1.0,
    dtype='float32',
    name='basic_lstm',
):
458
    r"""
T
tianshuo78520a 已提交
459
    LSTM implementation using basic operators, supports multiple layers and bidirectional LSTM.
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

    .. math::
           i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i)

           f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias )

           o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o)

           \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c)

           c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

           h_t &= o_t \odot tanh(c_t)

    Args:
475 476
        input (Variable): lstm input tensor,
                       if batch_first = False, shape should be ( seq_len x batch_size x input_size )
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
                       if batch_first = True, shape should be ( batch_size x seq_len x hidden_size )
        init_hidden(Variable|None): The initial hidden state of the LSTM
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
                       and can be reshaped to a tensor with shape ( num_layers x 2 x batch_size x hidden_size) to use.
                       If it's None, it will be set to all 0.
        init_cell(Variable|None): The initial hidden state of the LSTM
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
                       and can be reshaped to a tensor with shape ( num_layers x 2 x batch_size x hidden_size) to use.
                       If it's None, it will be set to all 0.
        hidden_size (int): Hidden size of the LSTM
        num_layers (int): The total number of layers of the LSTM
        sequence_length (Variabe|None): A tensor (shape [batch_size]) stores each real length of each instance,
                        This tensor will be convert to a mask to mask the padding ids
                        If it's None means NO padding ids
493
        dropout_prob(float|0.0): Dropout prob, dropout ONLY work after rnn output of each layers,
494 495
                             NOT between time steps
        bidirectional (bool|False): If it is bidirectional
496 497 498 499 500
        batch_first (bool|True): The shape format of the input and output tensors. If true,
            the shape format should be :attr:`[batch_size, seq_len, hidden_size]`. If false,
            the shape format should be :attr:`[seq_len, batch_size, hidden_size]`. By default
            this function accepts input and emits output in batch-major form to be consistent
            with most of data format, though a bit less efficient because of extra transposes.
501 502 503 504 505 506 507
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of LSTM unit.
508
            If it is set to None or one attribute of ParamAttr, lstm_unit will
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cell (actNode).
                             Default: 'fluid.layers.tanh'
        forget_bias (float|1.0) : Forget bias used to compute the forget gate
        dtype(string): Data type used in this unit
        name(string): Name used to identify parameters and biases

    Returns:
        rnn_out(Tensor), last_hidden(Tensor), last_cell(Tensor)
            - rnn_out is the result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
              if is_bidirec set to True, it's shape will be ( seq_len x batch_sze x hidden_size*2)
            - last_hidden is the hidden state of the last step of LSTM \
              with shape ( num_layers x batch_size x hidden_size ) \
              if is_bidirec set to True, it's shape will be ( num_layers*2 x batch_size x hidden_size),
              and can be reshaped to a tensor ( num_layers x 2 x batch_size x hidden_size)  to use.
            - last_cell is the hidden state of the last step of LSTM \
              with shape ( num_layers x batch_size x hidden_size ) \
              if is_bidirec set to True, it's shape will be ( num_layers*2 x batch_size x hidden_size),
              and can be reshaped to a tensor ( num_layers x 2 x batch_size x hidden_size)  to use.

    Examples:
        .. code-block:: python
534

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import basic_lstm

            batch_size = 20
            input_size = 128
            hidden_size = 256
            num_layers = 2
            dropout = 0.5
            bidirectional = True
            batch_first = False

            input = layers.data( name = "input", shape = [-1, batch_size, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')
            pre_cell = layers.data( name = "pre_cell", shape=[-1, hidden_size], dtype='float32')
            sequence_length = layers.data( name="sequence_length", shape=[-1], dtype='int32')

            rnn_out, last_hidden, last_cell = basic_lstm( input, pre_hidden, pre_cell, \
                    hidden_size, num_layers = num_layers, \
                    sequence_length = sequence_length, dropout_prob=dropout, bidirectional = bidirectional, \
                    batch_first = batch_first)

    """
    fw_unit_list = []

    for i in range(num_layers):
        new_name = name + "_layers_" + str(i)
561 562 563 564 565 566 567 568 569 570
        if param_attr is not None and param_attr.name is not None:
            layer_param_attr = copy.deepcopy(param_attr)
            layer_param_attr.name += "_fw_w_" + str(i)
        else:
            layer_param_attr = param_attr
        if bias_attr is not None and bias_attr.name is not None:
            layer_bias_attr = copy.deepcopy(bias_attr)
            layer_bias_attr.name += "_fw_b_" + str(i)
        else:
            layer_bias_attr = bias_attr
571
        fw_unit_list.append(
572 573 574 575 576 577 578 579 580 581 582
            BasicLSTMUnit(
                new_name,
                hidden_size,
                param_attr=layer_param_attr,
                bias_attr=layer_bias_attr,
                gate_activation=gate_activation,
                activation=activation,
                forget_bias=forget_bias,
                dtype=dtype,
            )
        )
583 584 585 586 587
    if bidirectional:
        bw_unit_list = []

        for i in range(num_layers):
            new_name = name + "_reverse_layers_" + str(i)
588 589 590 591 592 593 594 595 596 597
            if param_attr is not None and param_attr.name is not None:
                layer_param_attr = copy.deepcopy(param_attr)
                layer_param_attr.name += "_bw_w_" + str(i)
            else:
                layer_param_attr = param_attr
            if bias_attr is not None and bias_attr.name is not None:
                layer_bias_attr = copy.deepcopy(bias_attr)
                layer_bias_attr.name += "_bw_b_" + str(i)
            else:
                layer_bias_attr = param_attr
598
            bw_unit_list.append(
599 600 601 602 603 604 605 606 607 608 609
                BasicLSTMUnit(
                    new_name,
                    hidden_size,
                    param_attr=layer_param_attr,
                    bias_attr=layer_bias_attr,
                    gate_activation=gate_activation,
                    activation=activation,
                    forget_bias=forget_bias,
                    dtype=dtype,
                )
            )
610 611 612 613 614 615 616

    if batch_first:
        input = layers.transpose(input, [1, 0, 2])

    mask = None
    if sequence_length:
        max_seq_len = layers.shape(input)[0]
617 618 619
        mask = layers.sequence_mask(
            sequence_length, maxlen=max_seq_len, dtype='float32'
        )
620 621 622 623 624 625 626 627 628

        mask = layers.transpose(mask, [1, 0])

    direc_num = 1
    if bidirectional:
        direc_num = 2
        # convert to [num_layers, 2, batch_size, hidden_size]
    if init_hidden:
        init_hidden = layers.reshape(
629 630
            init_hidden, shape=[num_layers, direc_num, -1, hidden_size]
        )
631
        init_cell = layers.reshape(
632 633
            init_cell, shape=[num_layers, direc_num, -1, hidden_size]
        )
634 635

    # forward direction
636 637 638
    def get_single_direction_output(
        rnn_input, unit_list, mask=None, direc_index=0
    ):
639 640 641 642 643 644 645 646 647 648 649 650
        rnn = StaticRNN()
        with rnn.step():
            step_input = rnn.step_input(rnn_input)

            if mask:
                step_mask = rnn.step_input(mask)

            for i in range(num_layers):
                if init_hidden:
                    pre_hidden = rnn.memory(init=init_hidden[i, direc_index])
                    pre_cell = rnn.memory(init=init_cell[i, direc_index])
                else:
651 652 653 654 655 656
                    pre_hidden = rnn.memory(
                        batch_ref=rnn_input, shape=[-1, hidden_size]
                    )
                    pre_cell = rnn.memory(
                        batch_ref=rnn_input, shape=[-1, hidden_size]
                    )
657

658 659 660
                new_hidden, new_cell = unit_list[i](
                    step_input, pre_hidden, pre_cell
                )
661 662 663

                if mask:
                    new_hidden = layers.elementwise_mul(
664 665 666 667
                        new_hidden, step_mask, axis=0
                    ) - layers.elementwise_mul(
                        pre_hidden, (step_mask - 1), axis=0
                    )
668
                    new_cell = layers.elementwise_mul(
669 670 671 672
                        new_cell, step_mask, axis=0
                    ) - layers.elementwise_mul(
                        pre_cell, (step_mask - 1), axis=0
                    )
673 674 675 676 677 678 679 680

                rnn.update_memory(pre_hidden, new_hidden)
                rnn.update_memory(pre_cell, new_cell)

                rnn.step_output(new_hidden)
                rnn.step_output(new_cell)

                step_input = new_hidden
681
                if dropout_prob is not None and dropout_prob > 0.0:
682 683 684
                    step_input = layers.dropout(
                        step_input,
                        dropout_prob=dropout_prob,
685 686
                        dropout_implementation='upscale_in_train',
                    )
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

            rnn.step_output(step_input)

        rnn_out = rnn()

        last_hidden_array = []
        last_cell_array = []
        rnn_output = rnn_out[-1]
        for i in range(num_layers):
            last_hidden = rnn_out[i * 2]
            last_hidden = last_hidden[-1]
            last_hidden_array.append(last_hidden)
            last_cell = rnn_out[i * 2 + 1]
            last_cell = last_cell[-1]
            last_cell_array.append(last_cell)

        last_hidden_output = layers.concat(last_hidden_array, axis=0)
704 705 706
        last_hidden_output = layers.reshape(
            last_hidden_output, shape=[num_layers, -1, hidden_size]
        )
707
        last_cell_output = layers.concat(last_cell_array, axis=0)
708 709 710
        last_cell_output = layers.reshape(
            last_cell_output, shape=[num_layers, -1, hidden_size]
        )
711 712 713 714 715

        return rnn_output, last_hidden_output, last_cell_output
        # seq_len, batch_size, hidden_size

    fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output(
716 717
        input, fw_unit_list, mask, direc_index=0
    )
718 719 720 721 722 723 724

    if bidirectional:
        bw_input = layers.reverse(input, axis=[0])
        bw_mask = None
        if mask:
            bw_mask = layers.reverse(mask, axis=[0])
        bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output(
725 726
            bw_input, bw_unit_list, bw_mask, direc_index=1
        )
727 728 729 730 731 732

        bw_rnn_out = layers.reverse(bw_rnn_out, axis=[0])

        rnn_out = layers.concat([fw_rnn_out, bw_rnn_out], axis=2)
        last_hidden = layers.concat([fw_last_hidden, bw_last_hidden], axis=1)
        last_hidden = layers.reshape(
733 734
            last_hidden, shape=[num_layers * direc_num, -1, hidden_size]
        )
735 736 737

        last_cell = layers.concat([fw_last_cell, bw_last_cell], axis=1)
        last_cell = layers.reshape(
738 739
            last_cell, shape=[num_layers * direc_num, -1, hidden_size]
        )
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756

        if batch_first:
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])
        return rnn_out, last_hidden, last_cell
    else:

        rnn_out = fw_rnn_out
        last_hidden = fw_last_hidden
        last_cell = fw_last_cell

        if batch_first:
            rnn_out = layers.transpose(rnn_out, [1, 0, 2])

        return rnn_out, last_hidden, last_cell


class BasicLSTMUnit(Layer):
757
    r"""
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    ****
    BasicLSTMUnit class, Using basic operator to build LSTM
    The algorithm can be described as the code below.

        .. math::

           i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + b_i)

           f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + b_f + forget_bias )

           o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + b_o)

           \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + b_c)

           c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

           h_t &= o_t \odot tanh(c_t)

        - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
          of weights from the input gate to the input)
        - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
        - sigmoid is the logistic sigmoid function.
        - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
          and cell activation vectors, respectively, all of which have the same size as
          the cell output activation vector $h$.
        - The :math:`\odot` is the element-wise product of the vectors.
        - :math:`tanh` is the activation functions.
        - :math:`\\tilde{c_t}` is also called candidate hidden state,
          which is computed based on the current input and the previous hidden state.

    Args:
        name_scope(string) : The name scope used to identify parameter and bias name
        hidden_size (integer): The hidden size used in the Unit.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            weight matrix. Note:
            If it is set to None or one attribute of ParamAttr, lstm_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias
            of LSTM unit.
798
            If it is set to None or one attribute of ParamAttr, lstm_unit will
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
            create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized as zero. Default: None.
        gate_activation (function|None): The activation function for gates (actGate).
                                  Default: 'fluid.layers.sigmoid'
        activation (function|None): The activation function for cells (actNode).
                             Default: 'fluid.layers.tanh'
        forget_bias(float|1.0): forget bias used when computing forget gate
        dtype(string): data type used in this unit

    Examples:

        .. code-block:: python

            import paddle.fluid.layers as layers
            from paddle.fluid.contrib.layers import BasicLSTMUnit

            input_size = 128
            hidden_size = 256
            input = layers.data( name = "input", shape = [-1, input_size], dtype='float32')
            pre_hidden = layers.data( name = "pre_hidden", shape=[-1, hidden_size], dtype='float32')
            pre_cell = layers.data( name = "pre_cell", shape=[-1, hidden_size], dtype='float32')

            lstm_unit = BasicLSTMUnit( "gru_unit", hidden_size)

            new_hidden, new_cell = lstm_unit( input, pre_hidden, pre_cell )

    """

827 828 829 830 831 832 833 834 835 836 837
    def __init__(
        self,
        name_scope,
        hidden_size,
        param_attr=None,
        bias_attr=None,
        gate_activation=None,
        activation=None,
        forget_bias=1.0,
        dtype='float32',
    ):
838
        super().__init__(name_scope, dtype)
839
        # reserve old school _full_name and _helper for static graph save load
840 841 842
        self._full_name = unique_name.generate(
            name_scope + "/" + self.__class__.__name__
        )
843
        self._helper = LayerObjectHelper(self._full_name)
844 845 846 847 848

        self._name = name_scope
        self._hiden_size = hidden_size
        self._param_attr = param_attr
        self._bias_attr = bias_attr
849 850
        self._gate_activation = gate_activation or paddle.nn.functional.sigmoid
        self._activation = activation or paddle.tanh
851 852 853
        self._forget_bias = layers.fill_constant(
            [1], dtype=dtype, value=forget_bias
        )
854 855 856 857 858
        self._forget_bias.stop_gradient = False
        self._dtype = dtype

    def _build_once(self, input, pre_hidden, pre_cell):
        self._input_size = input.shape[-1]
859
        assert self._input_size > 0
860 861 862 863

        self._weight = self.create_parameter(
            attr=self._param_attr,
            shape=[self._input_size + self._hiden_size, 4 * self._hiden_size],
864 865
            dtype=self._dtype,
        )
866

867 868 869 870 871 872
        self._bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[4 * self._hiden_size],
            dtype=self._dtype,
            is_bias=True,
        )
873 874 875 876 877 878 879 880 881 882

    def forward(self, input, pre_hidden, pre_cell):
        concat_input_hidden = layers.concat([input, pre_hidden], 1)
        gate_input = layers.matmul(x=concat_input_hidden, y=self._weight)

        gate_input = layers.elementwise_add(gate_input, self._bias)
        i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
        new_cell = layers.elementwise_add(
            layers.elementwise_mul(
                pre_cell,
883 884 885 886 887 888
                paddle.nn.functional.sigmoid(
                    layers.elementwise_add(f, self._forget_bias)
                ),
            ),
            layers.elementwise_mul(
                paddle.nn.functional.sigmoid(i), paddle.tanh(j)
889 890
            ),
        )
891
        new_hidden = paddle.tanh(new_cell) * paddle.nn.functional.sigmoid(o)
892 893

        return new_hidden, new_cell