op_teller.cc 97.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24 25
#include "paddle/fluid/framework/op_meta_info_helper.h"
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
26

W
wanghuancoder 已提交
27 28 29 30 31 32
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

33 34 35 36 37 38
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
39
  SimpleOpTypeSetTeller() {
40
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
41
    // use TensorRT plugin
42
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
43 44
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
45 46
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
47
#endif
W
wenbin 已提交
48 49
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
50
    teller_set.insert("flatten_contiguous_range");
51
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
52 53 54 55
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
56
#endif
W
wenbin 已提交
57
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
58 59
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
60 61
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
62 63 64 65 66 67
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
68
#endif
69 70 71 72 73 74
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
#endif
75 76 77
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
78 79
#endif
  }
80

W
weishengying 已提交
81 82 83 84 85 86 87 88 89 90
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
91
    std::unordered_set<std::string> act_op_list = {
92 93 94 95 96 97 98 99 100 101 102 103
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
        "reciprocal", "tanh_shrink", "logsigmoid"};
104
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
105
      auto* block = desc.Block();
106 107 108 109 110 111
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
J
JingZhuangzhuang 已提交
112 113 114 115 116 117 118 119
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << op_type
                << " op does not support input's dim is 1 in tensorrt.";
        return false;
      }
120 121 122 123 124 125
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
#endif
J
JingZhuangzhuang 已提交
126 127
    }

128 129
    // In static shape in Paddle-TRT, we can't allow that one op has a
    // 1D intermediate tensor as input.
130 131
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
132 133 134 135 136 137 138 139 140 141 142
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
              if (shape.size() == 1) return false;
            }
          }
143 144 145 146
        }
      }
    }

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

163
    if (op_type == "pool2d") {
164 165 166 167 168 169 170
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

171
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
172
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
173 174
      if (paddings.size() > 2) {
        return false;
175
      }
176 177 178 179 180 181 182 183 184 185
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
186 187
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
188
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
189 190 191 192
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
193 194 195 196
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
197
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
198 199 200 201 202
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
203 204
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
205
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
206
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
207
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
208
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
209
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
210 211 212 213 214 215 216 217 218 219 220 221 222
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
223 224 225 226
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
227 228
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

252 253
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
254 255 256 257
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
258
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
259 260 261 262 263 264 265 266 267 268 269 270 271 272
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
273

W
wenbin 已提交
274
// strides > 1 and 'SAME' is only supported by trt7.0 above
275
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
276 277 278 279
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
280
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
281 282
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
283
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
284 285 286 287 288 289
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
290 291 292 293
          }
        }
      }
#endif
294 295 296 297 298 299 300 301 302
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
          VLOG(3) << "Trt not support filter is  a intermediate tensor in "
                     "conv2d op.";
          return false;
        }
      }
303 304
    }

W
wangxinxin08 已提交
305 306 307 308 309
    if (op_type == "deformable_conv") {
      if (with_dynamic_shape) {
        VLOG(3) << "Deformable conv trt plugin does not support dynamic shape";
        return false;
      }
310 311 312
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
328
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
329 330 331 332 333 334 335 336
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
337
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
338 339 340 341 342 343 344
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
345
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
346 347 348 349 350 351 352
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

353 354 355 356 357 358
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

359 360 361 362 363 364
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }

388 389 390 391 392 393 394 395 396 397 398 399 400 401
    if (op_type == "matmul_v2") {
      if (!with_dynamic_shape) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      return true;
    }

402 403
    if (op_type == "matmul") {
      auto* block = desc.Block();
404 405 406 407 408 409
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

      // not support broadcast
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
      if (x_shape.size() != y_shape.size()) {
        VLOG(3)
            << "matmul op not support broadcast, please check inputs'shape. ";
        return false;
      }
      uint64_t dims = 2;
      for (size_t i = 0; i < x_shape.size() - dims; ++i) {
        if (x_shape[i] != y_shape[i] && (x_shape[i] == 1 || y_shape[i] == 1)) {
          VLOG(3) << "matmul op not support broadcast, please check "
                     "inputs'shape[i]. ";
          return false;
        }
      }

430 431 432 433 434
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() < 3) {
435
            VLOG(3)
P
Pei Yang 已提交
436 437
                << "matmul op dims < 3 not supported in tensorrt, but got dims "
                << shape.size() << ", so jump it.";
438 439 440 441 442
            return false;
          }
        }
      }
    }
W
Wilber 已提交
443 444 445 446 447 448 449 450 451 452 453 454
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }
455
    if (op_type == "group_norm") {
456 457 458 459
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

460 461
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
462 463 464 465 466 467 468
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
469 470 471 472
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
473
      }
R
Ruibiao Chen 已提交
474
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
475 476
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
477 478 479 480 481
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
482
        }
483 484
      }
    }
485 486 487
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
488 489
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
490
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
491 492 493 494
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
495 496 497 498 499 500
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
501 502 503
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
504
      if (axis.size() != x_shape.size()) return false;
505
      int dims = x_shape.size();
W
wenbin 已提交
506

507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
525
        return false;
526 527
      }
    }
528
    if (op_type == "flatten2" || op_type == "flatten") {
529 530 531
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
532 533
#if IS_TRT_VERSION_GE(7130)
#else
534
        if (with_dynamic_shape) return false;
535
#endif
R
Ruibiao Chen 已提交
536
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
537 538 539
        if (axis != 1) return false;
      }
    }
540 541
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
542 543 544
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
545 546
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
574

575
    if (op_type == "gather") {
576 577 578 579 580 581 582 583 584
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
        if (desc.Input("Axis").size() >= 1) {
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
585
        auto* block = desc.Block();
586 587 588 589 590 591
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
592 593 594 595 596 597 598 599 600 601

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);

        // The index input must be int32 datatype.
        if (index_var_desc->GetDataType() !=
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "gather op Index input data type must be int32";
          return false;
        }
F
feng_shuai 已提交
602
#if !IS_TRT_VERSION_GE(7000)
603 604 605 606 607 608
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
609
#endif
610
      }
611
    }
Z
zlsh80826 已提交
612

613
    if (op_type == "gather_nd") {
614 615
      if (!with_dynamic_shape) return false;

616
      auto* block = desc.Block();
617 618 619 620 621 622
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
623
#if IS_TRT_VERSION_LT(8200)
624 625
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
626 627
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
628 629
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
630 631 632 633 634 635
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

636 637 638 639 640
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
641
#endif
642 643
    }

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      // The index input must be int32 datatype.
      if (index_var_desc->GetDataType() !=
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "take_along_axis op Index input data type must be int32";
        return false;
      }

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

674 675 676 677
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
678 679 680 681 682 683
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
684
      if (!has_attrs) return false;
Z
zlsh80826 已提交
685 686
    }

687 688 689 690 691 692
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

693
    if (op_type == "arg_max" || op_type == "arg_min") {
694 695 696 697 698 699
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

700
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
701
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
702
                     : -1;
X
xiaoxiaohehe001 已提交
703 704 705 706 707 708
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
709
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
710 711
    }

712 713
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
714
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
715
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
716
      if (data_layout != phi::DataLayout::kNCHW) return false;
717 718

      auto* block = desc.Block();
719 720 721 722 723 724
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
725 726 727 728 729 730
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
731 732
    }

733
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
734
      auto* block = desc.Block();
735 736 737 738 739 740
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
741 742 743 744 745 746 747 748
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
749 750 751 752
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
753
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
754 755 756 757 758 759 760 761 762 763 764 765
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

766 767 768
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
769
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
770 771
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
772
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
773 774
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
775
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
776 777 778 779 780 781
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

782
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
783 784
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
785
      for (auto const& attr : attrs) {
786 787
        if (!desc.HasAttr(attr)) return false;
      }
788
      if (desc.HasAttr("data_layout")) {
789
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
790
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
791 792
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
793 794
          return false;
      }
795
      auto interp_method =
R
Ruibiao Chen 已提交
796
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
797
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
798 799 800 801 802
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
803 804 805 806
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
807
        }
808 809
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
810 811
          return false;
        }
812
      }
813 814 815 816 817 818 819 820 821
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
822
    }
823

824
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
825 826 827 828 829 830
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
831
      for (auto const& attr : attrs) {
832 833
        if (!desc.HasAttr(attr)) return false;
      }
834
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
835
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
836 837
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
838 839
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
840
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
841
      if (interp_method != "nearest") return false;
842 843 844 845 846 847 848 849

      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }

R
Ruibiao Chen 已提交
850 851 852
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
853
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
854
        if (scale.size() < 2) return false;
855 856 857 858 859 860 861 862
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

863
    if (op_type == "bilinear_interp_v2") {
C
ccrrong 已提交
864 865 866 867 868 869
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
870
      for (auto const& attr : attrs) {
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
        if (desc.Input("SizeTensor").size() >= 1) {
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
889 890
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
891 892 893 894 895
                  << op_type;
          return false;
        }
      }

896
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
897
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
898 899
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
900 901 902 903 904
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
905
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
906 907 908 909 910 911
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
912 913
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
914 915 916 917 918 919 920 921 922 923 924
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
925
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
926 927 928 929 930 931 932
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
933 934
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

960 961 962 963 964 965 966 967 968 969 970 971 972 973
    if (op_type == "hard_swish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }

      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "HardSwish op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
    }

974
    if (op_type == "squeeze2") {
975 976 977 978 979 980 981
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

982 983
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
984
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1003
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
      }
      if (axes.size() == 0) {
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1019
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1020 1021
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1022 1023 1024 1025 1026 1027 1028 1029 1030
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1031 1032 1033 1034 1035 1036
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
        if (desc.Input("MomentumTensor").size() >= 1) {
          return false;
        }
      }
1037 1038 1039 1040 1041 1042
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1053 1054 1055 1056 1057 1058 1059 1060 1061
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
        if (desc.Input("AxisTensor").size() >= 1) {
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
        if (desc.Input("SectionsTensorList").size() >= 1) {
          return false;
        }
      }
1073 1074
      if (!desc.HasAttr("axis")) {
        return false;
1075
      }
R
Ruibiao Chen 已提交
1076
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1077 1078 1079 1080 1081 1082 1083

      if (axis == 0) {
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
                   "TensorRT";
        return false;
      }
      auto* block = desc.Block();
1084 1085 1086 1087 1088 1089
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1090 1091 1092 1093 1094 1095 1096
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1097
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1098 1099 1100
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1101
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
      }
      if (output_lengths.size() == 0 && num == 0) {
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
      if (output_lengths.size() == 0) {
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1134 1135
        }
      }
1136 1137 1138 1139
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1140
    }
1141

1142 1143 1144 1145 1146 1147 1148 1149
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
        if (desc.Input("ScaleTensor").size() >= 1) {
          return false;
        }
      }
      auto* block = desc.Block();
1150 1151 1152 1153 1154 1155
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1156 1157 1158
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1159
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
        if (x_shape.size() == 1) {
          VLOG(3)
              << "Scale op does not support 1-dimensional input in tensorrt";
          return false;
        }
      } else {
        // At present, only support float32 or float16 or int32 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
              dtype == framework::proto::VarType::INT32)) {
          return false;
        }
1178
      }
1179
    }
1180

F
feng_shuai 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1192 1193 1194 1195 1196
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1197 1198 1199 1200 1201 1202 1203 1204
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
        if (desc.Input("SequenceLength").size()) {
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1256 1257 1258 1259 1260
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1261 1262 1263
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1274
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1275 1276
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1277 1278 1279 1280 1281
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1282 1283
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1284 1285 1286 1287 1288
          return false;
        }
      }
    }

1289
    if (op_type == "slice") {
1290 1291
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1292
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1293 1294 1295
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1296 1297
            return false;
          }
1298 1299
        }
      }
1300 1301
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1302
        VLOG(3) << "The necessary attributes of the slice operator axes "
1303
                   " are missing.";
1304 1305
        return false;
      } else {
1306
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1317 1318
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1319 1320 1321 1322 1323 1324 1325 1326
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
          desc.Input("StartsTensor").size()) {
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1327
          return false;
1328 1329 1330 1331 1332 1333 1334 1335
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1336 1337
        }
      }
1338 1339 1340 1341 1342 1343 1344 1345
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
          desc.Input("EndsTensor").size()) {
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1346
          return false;
1347 1348 1349 1350 1351 1352 1353 1354
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
        if (desc.Input("StartsTensorList").size()) {
          return false;
        }
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
        if (desc.Input("EndsTensorList").size()) {
          return false;
        }
      }
1367 1368
    }

1369 1370 1371 1372
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
        op_type == "logical_and" || op_type == "less_equal") {
#if IS_TRT_VERSION_GE(8400)
1373
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1374
      if (!with_dynamic_shape) {
1375
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1376 1377
        return false;
      }
1378 1379 1380 1381 1382
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1383 1384 1385 1386
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
          op_type == "less_equal") {
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1398 1399 1400 1401 1402 1403 1404 1405
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1406
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1407
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1408
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
W
wenbin 已提交
1409
        op_type == "elementwise_max" || op_type == "elementwise_floordiv") {
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1428
      auto* block = desc.Block();
1429 1430 1431 1432 1433 1434
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1435 1436 1437 1438
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
          op_type == "elementwise_max" || op_type == "elementwise_floordiv") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
          VLOG(3) << "These operations "
                     "(elementwise_add/mul/sub/div/pow/min/max/floordiv) do "
                     "not support boolean datatype.";
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1463 1464 1465 1466 1467 1468
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1469 1470
        return false;
      }
1471 1472 1473 1474
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1475
        return false;
1476
      }
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
    }

    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
    }
1489 1490 1491 1492 1493 1494 1495 1496
    // remember that 1D input in static shape mode is filtered at the beginning
    if (op_type == "sum") {
      return true;
    }

    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1523 1524
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1525 1526 1527
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1552

1553
#if IS_TRT_VERSION_LT(7000)
1554
      if (desc.HasAttr("approximate")) {
1555
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1556
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1557
      }
1558
#endif
1559 1560

      auto* block = desc.Block();
1561 1562 1563 1564 1565 1566
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1567

1568 1569 1570 1571 1572 1573 1574
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "gelu op does not support input's dim is 1 in tensorrt.";
        return false;
      }
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ValueTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensor").size()) return false;
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
        if (desc.Input("ShapeTensorList").size()) return false;
      }
1614 1615 1616
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1617 1618 1619 1620 1621 1622
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1660 1661
    }

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
    if (op_type == "leaky_relu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid number of TRT leaky_relu op converter "
                   "inputs. Expected 1, but received "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "output of leaky_relu op converter should be 1, got "
                << desc.Output("Out").size();
        return false;
      }
    }

    if (op_type == "pad") {
1677
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1678 1679
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1680 1681 1682 1683
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1684 1685
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1686 1687 1688 1689 1690 1691
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1692 1693 1694 1695 1696 1697 1698 1699
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1700
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1713 1714
    }

1715 1716
    if (op_type == "swish") {
      auto* block = desc.Block();
1717 1718 1719 1720 1721 1722
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1723 1724 1725 1726 1727 1728 1729 1730 1731
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "swish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1745 1746

      auto* block = desc.Block();
1747 1748 1749 1750 1751 1752
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1753 1754 1755 1756 1757 1758 1759 1760 1761
      auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
      if (!var_desc) {
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1762 1763 1764
      if (!with_dynamic_shape && x_shape.size() == 1) {
        VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt "
                   "with static shape.";
1765 1766 1767
        return false;
      }

W
Wilber 已提交
1768 1769 1770 1771 1772 1773 1774
#if IS_TRT_VERSION_LT(7000)
      if (!with_dynamic_shape) {
        // TODO(inference): fix trt6 static plugin error.
        VLOG(3) << "prelu static plugin in trt6 has bug.";
        return false;
      }
#endif
1775 1776
    }

W
wangxinxin08 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "mish op does not support input's dim is 1 in tensorrt.";
        return false;
      }
    }

1808 1809 1810 1811 1812 1813 1814
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1815 1816 1817 1818
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1819
                                     "aligned"};
1820
      for (auto const& attr : attrs) {
1821 1822 1823 1824
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1825
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1826 1827 1828
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1829
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1830 1831 1832
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1833
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1834 1835 1836 1837 1838 1839 1840 1841
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
        if (desc.Input("RoisNum").size() >= 1) {
          return false;
        }
      }
1842 1843 1844
    }

    if (op_type == "shuffle_channel") {
1845
#if !IS_TRT_VERSION_GE(8000)
1846 1847
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1848 1849
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1850 1851
        return false;
      }
1852
#endif
1853 1854
    }

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
        if (desc.Input("depth_tensor").size() != 0) {
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1905 1906 1907 1908 1909 1910 1911
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1923 1924 1925 1926 1927
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
1944
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
1954
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
1955 1956
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
1957 1958 1959 1960
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
1961 1962
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
1963 1964 1965 1966 1967 1968 1969
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
1970 1971 1972
          return false;
        }
      } else {
1973 1974 1975
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
1976
        return false;
F
feng_shuai 已提交
1977
#endif
1978
      }
1979 1980
    }

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

2033
    if (op_type == "fc") {
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      // y'shapes == 2
      auto fc_inputs = desc.Inputs();
      std::string fc_y = "";
      if (fc_inputs.find("Y") != fc_inputs.end()) {
        fc_y = "Y";
      } else if (fc_inputs.find("W") != fc_inputs.end()) {
        fc_y = "W";
      } else {
        VLOG(3) << " input_y(fc_op) must be Y or W ";
        return false;
      }

      //  There is currently no input: Y(weight) more than two dimensions
      /*
      auto* y_var_desc = block->FindVar(desc.Input(fc_y)[0]);
      const auto y_shape = y_var_desc->GetShape();
      if (y_shape.size() != 2) {
        VLOG(3)
2060 2061
            << " input_y(fc_op)'shapes must be 2, but input_y(fc_op)'shapes =
      "
2062 2063 2064 2065 2066 2067
            << y_shape.size();
        return false;
      }
      // y_num_col_dims ==1
      if (desc.HasAttr("y_num_col_dims")) {
        int y_num_col_dims =
R
Ruibiao Chen 已提交
2068
            PADDLE_GET_CONST(int, desc.GetAttr("y_num_col_dims"));
2069 2070 2071 2072 2073 2074 2075
        if (y_num_col_dims != 1) {
          VLOG(3) << " fc_op'y_num_col_dims must be 1, but y_num_col_dims = "
                  << y_num_col_dims;
          return false;
        }
      }
      */
2076 2077
      int x_num_col_dims =
          desc.HasAttr("x_num_col_dims")
R
Ruibiao Chen 已提交
2078
              ? PADDLE_GET_CONST(int, desc.GetAttr("x_num_col_dims"))
2079
              : (desc.HasAttr("in_num_col_dims")
R
Ruibiao Chen 已提交
2080
                     ? PADDLE_GET_CONST(int, desc.GetAttr("in_num_col_dims"))
2081 2082
                     : 1);
      if (x_num_col_dims < 1) {
2083 2084 2085
        VLOG(3) << "fc_op expects x_num_col_dims >= 1, "
                   "but x_num_col_dims = "
                << x_num_col_dims;
2086 2087 2088
        return false;
      }
    }
2089

W
Wangzheee 已提交
2090 2091 2092
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2093
      }
2094 2095 2096 2097
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2098
      auto reshape_inputs = desc.Inputs();
2099 2100 2101 2102 2103 2104 2105 2106 2107
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
        if (desc.Input("Shape").size() >= 1) {
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
        if (desc.Input("ShapeTensor").size() >= 1) {
          return false;
        }
W
Wangzheee 已提交
2108
      }
W
Wilber 已提交
2109
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2110
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2111
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2123 2124 2125 2126
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2127 2128 2129 2130
          if (input_num == shape_num) {
            return true;
          }
        }
2131
        return false;
X
xiaoxiaohehe001 已提交
2132
      }
W
Wangzheee 已提交
2133
    }
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
        if (desc.Input("Min").size() >= 1) {
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
        if (desc.Input("Max").size() >= 1) {
          return false;
        }
      }

      auto* block = desc.Block();
2150 2151 2152 2153 2154 2155
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2156 2157 2158 2159 2160
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
    }

2161
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2162 2163
        op_type == "reduce_max" || op_type == "reduce_min" ||
        op_type == "reduce_prod") {
2164 2165 2166 2167 2168 2169 2170
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2171 2172
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2173 2174
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2175
                   "reduce_all)";
2176 2177 2178 2179 2180 2181 2182 2183
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2184 2185
        return false;
      }
W
wenbin 已提交
2186 2187

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2188
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2189
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2190
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2191
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2192
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2193
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2194
        for (auto x : dim) {
2195
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2196
        }
2197

2198
      } else {
R
Ruibiao Chen 已提交
2199 2200
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2201 2202
          return false;
      }
2203 2204 2205 2206 2207 2208 2209

      auto dtype = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(7000)
      if (dtype != framework::proto::VarType::INT32 &&
          dtype != framework::proto::VarType::FP32) {
        VLOG(3) << "reduce op input data type must be int32 or float32";
        return false;
W
wenbin 已提交
2210
      }
2211 2212
#else
      if (dtype != framework::proto::VarType::FP32) {
2213 2214
        VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                   "< 7.0";
2215 2216 2217
        return false;
      }
#endif
2218
    }
W
wenbin 已提交
2219 2220 2221
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2222 2223 2224
      auto tile_inputs = desc.Inputs();
      if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
        if (desc.Input("repeat_times_tensor").size() >= 1) {
W
wenbin 已提交
2225
          return false;
2226 2227 2228 2229
        }
      }
      if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
        if (desc.Input("RepeatTimes").size() >= 1) {
W
wenbin 已提交
2230
          return false;
2231
        }
W
wenbin 已提交
2232 2233 2234 2235 2236
      }
      if (with_dynamic_shape) return false;
      if (!with_dynamic_shape && !desc.HasAttr("repeat_times")) return false;
    }
#endif
2237

2238 2239 2240 2241 2242
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2243 2244
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2245
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2246 2247 2248 2249 2250 2251
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2252
#endif
2253 2254
    }

W
wenbin 已提交
2255 2256 2257
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2258
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2273

W
wenbin 已提交
2274
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2275
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2297
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

2315 2316 2317 2318
    if (op_type == "hard_sigmoid") {
      if (!with_dynamic_shape) {
        auto* block = desc.Block();
        if (block == nullptr) {
2319 2320 2321
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
2322 2323 2324 2325 2326
          return false;
        }
        auto x_var_name = desc.Input("X")[0];
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
2327 2328 2329
        if (x_shape.size() == 1) {
          VLOG(3) << "Hard sigmoid does not support 1-dimensional input in "
                     "tensorrt";
2330 2331 2332 2333 2334
          return false;
        }
      }
    }

C
ccrrong 已提交
2335
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2336 2337 2338 2339
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2340 2341 2342 2343 2344 2345
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2346 2347
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2348

2349
      if (in_dtype == 0 || out_dtype == 0) {
2350
#if IS_TRT_VERSION_GE(8400)
2351 2352 2353 2354 2355 2356
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2357 2358 2359 2360
        return false;
      }
    }

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
    if (op_type == "top_k_v2" || op_type == "top_k") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 1) {
        VLOG(3) << "top_k/top_k_v2 does not support 1-dimensional input in "
                   "tensorrt";
        return false;
      }
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2372
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2373 2374 2375 2376 2377 2378 2379
        if (axis == 0) {
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
                     "tensorrt";
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2380
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2381 2382 2383 2384 2385 2386 2387 2388
        if (!sorted) {
          VLOG(3) << "top_k_v2 does not support results not sorted in "
                     "tensorrt";
          return false;
        }
      }
    }

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2399
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2400
#if !IS_TRT_VERSION_GE(8000)
2401
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2402 2403
      return false;
#else
2404 2405 2406 2407 2408 2409
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2410 2411 2412
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2413
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2427 2428 2429 2430 2431 2432 2433
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2443 2444 2445 2446 2447 2448 2449
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2450

W
Wang Bojun 已提交
2451 2452 2453 2454 2455 2456 2457
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2458 2459 2460 2461 2462 2463 2464 2465
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

2482 2483 2484 2485 2486 2487 2488 2489
    if (op_type == "lookup_table") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2490 2491 2492 2493 2494 2495 2496 2497 2498
    if (op_type == "expand_v2") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
    }

W
weishengying 已提交
2499 2500 2501 2502 2503
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2504
  }
W
wenbin 已提交
2505

W
weishengying 已提交
2506 2507 2508 2509 2510
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
      "mul",
      "matmul",
2511
      "matmul_v2",
2512
      "bmm",
2513
      "range",
W
weishengying 已提交
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2537
      "acosh",
W
weishengying 已提交
2538 2539 2540
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2541
      "rsqrt",
2542
      "sign",
G
gem5 已提交
2543
      "reciprocal",
2544
      "logical_not",
W
weishengying 已提交
2545
      "erf",
2546
      "square",
W
weishengying 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2560 2561
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2562
      "elementwise_floordiv",
W
weishengying 已提交
2563
      "equal",
S
Sanbu 已提交
2564
      "not_equal",
2565 2566 2567 2568 2569 2570
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
W
weishengying 已提交
2571
      "dropout",
2572
      "fill_any_like",
W
weishengying 已提交
2573 2574 2575 2576 2577 2578
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
2579
      "where",
2580 2581
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2582 2583
      "swish",
      "silu",
2584
      "celu",
W
weishengying 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2599
      "group_norm",
W
weishengying 已提交
2600 2601 2602
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2603
      "arg_min",
W
weishengying 已提交
2604 2605 2606 2607
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2608
      "reduce_max",
W
weishengying 已提交
2609
      "reduce_mean",
2610
      "reduce_sum",
W
weishengying 已提交
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2623
      "multihead_matmul_roformer",
W
weishengying 已提交
2624 2625 2626 2627
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2628
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2644
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2645
      "reverse_roll",
2646
      "take_along_axis",
2647 2648
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2649
      "preln_layernorm_shift_partition",
2650
      "lookup_table",
W
wenbin 已提交
2651 2652
      "merge_layernorm",
      "skip_merge_layernorm",
2653
      "lookup_table_v2",
W
wenbin 已提交
2654 2655 2656
      "expand_v2",
      "skip_groupnorm_act",
      "preln_groupnorm_act"};
W
wenbin 已提交
2657

W
weishengying 已提交
2658 2659 2660
  std::unordered_set<std::string> teller_set{
      "mul",
      "matmul",
2661
      "matmul_v2",
2662
      "bmm",
2663
      "range",
W
weishengying 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2687
      "acosh",
W
weishengying 已提交
2688 2689 2690
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2691
      "rsqrt",
2692
      "sign",
G
gem5 已提交
2693
      "reciprocal",
2694
      "logical_not",
W
weishengying 已提交
2695
      "erf",
2696
      "square",
W
weishengying 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2710 2711
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2712
      "elementwise_floordiv",
W
weishengying 已提交
2713
      "equal",
S
Sanbu 已提交
2714
      "not_equal",
2715 2716 2717 2718 2719 2720
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
W
weishengying 已提交
2721
      "dropout",
2722
      "fill_any_like",
W
weishengying 已提交
2723 2724 2725 2726 2727 2728
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
2729
      "where",
2730 2731
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2732 2733
      "swish",
      "silu",
2734
      "celu",
W
weishengying 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2752
      "arg_min",
W
weishengying 已提交
2753 2754 2755 2756
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2757
      "reduce_max",
W
weishengying 已提交
2758
      "reduce_mean",
2759
      "reduce_sum",
W
weishengying 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2772
      "multihead_matmul_roformer",
W
weishengying 已提交
2773 2774 2775 2776 2777
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
2778
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
2794
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2795
      "reverse_roll",
2796
      "tanh_shrink",
2797
      "take_along_axis",
2798
      "logsigmoid",
W
wenbin 已提交
2799
      "preln_layernorm_shift_partition",
W
Wang Bojun 已提交
2800
      "merge_layernorm",
W
wenbin 已提交
2801
      "skip_merge_layernorm",
2802
      "lookup_table",
2803
      "lookup_table_v2",
W
wenbin 已提交
2804 2805 2806
      "expand_v2",
      "skip_groupnorm_act",
      "preln_groupnorm_act"};
W
weishengying 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
2820 2821 2822 2823
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
2824 2825 2826 2827 2828 2829 2830 2831
    if (op_type == "pad3d") {
      auto pad3d_inputs = desc.Inputs();
      if (pad3d_inputs.find("Paddings") != pad3d_inputs.end()) {
        if (desc.Input("Paddings").size() >= 1) {
          return false;
        }
      }
    }
W
weishengying 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
2890 2891 2892 2893 2894 2895
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::Default);
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::GenericPluginCreater);
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
    SetOpConverterType(op_type, OpConverterType::CustomPluginCreater);
    return true;
  }
2911 2912
  return false;
}
2913

W
weishengying 已提交
2914 2915 2916 2917 2918
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
2919 2920 2921
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle