overlap_add_op.h 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
24
#include "paddle/phi/kernels/funcs/math_function.h"
C
Charles-hit 已提交
25
#include "paddle/phi/kernels/funcs/seq2col.h"
26 27 28 29 30 31 32

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
struct OverlapAddFunctor {
33 34 35 36 37 38 39
  void operator()(const DeviceContext& dev_ctx,
                  const Tensor* input,
                  Tensor* output,
                  size_t seq_length,
                  size_t frame_length,
                  size_t n_frames,
                  size_t hop_length,
40 41 42 43 44 45 46
                  bool is_grad = false) const {
    auto numel = output->numel();
    const auto* input_data = input->data<T>();
    auto* output_data = output->data<T>();

    platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
    if (!is_grad) {
C
Charles-hit 已提交
47 48 49 50 51 52
      phi::funcs::Col2SeqFunctor<T> functor(input_data,
                                            output_data,
                                            seq_length,
                                            frame_length,
                                            n_frames,
                                            hop_length);
53 54
      for_range(functor);
    } else {
C
Charles-hit 已提交
55 56 57 58 59 60
      phi::funcs::Seq2ColFunctor<T> functor(input_data,
                                            output_data,
                                            seq_length,
                                            frame_length,
                                            n_frames,
                                            hop_length);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
      for_range(functor);
    }
  }
};

template <typename DeviceContext, typename T>
class OverlapAddKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    const Tensor* x = ctx.Input<Tensor>("X");
    Tensor* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());
    const size_t x_rank = x->dims().size();
    const size_t out_rank = out->dims().size();

    const int hop_length = ctx.Attr<int>("hop_length");
    const int axis = ctx.Attr<int>("axis");
    const int n_frames = (axis == 0) ? x->dims()[0] : x->dims()[x_rank - 1];
    const int frame_length = (axis == 0) ? x->dims()[1] : x->dims()[x_rank - 2];
    const int seq_length =
        (axis == 0) ? out->dims()[0] : out->dims()[out_rank - 1];

    auto& dev_ctx = ctx.device_context<DeviceContext>();

    Tensor x_(x->type());
    x_ = *x;

    framework::DDim preserved_dims;
    if (out_rank > 2) {
      // Save dims used to flatten both input and output tensors and restore
      // output tensor.
      framework::DDim x_resized_dims;
      framework::DDim out_resized_dims;
      if (axis == 0) {
95 96 97
        preserved_dims = phi::slice_ddim(out->dims(), 1, out_rank);
        x_resized_dims = {n_frames, frame_length, phi::product(preserved_dims)};
        out_resized_dims = {seq_length, phi::product(preserved_dims)};
98
      } else {
99 100 101
        preserved_dims = phi::slice_ddim(out->dims(), 0, out_rank - 1);
        x_resized_dims = {phi::product(preserved_dims), frame_length, n_frames};
        out_resized_dims = {phi::product(preserved_dims), seq_length};
102 103 104 105 106 107 108 109 110 111 112 113 114 115
      }
      x_.Resize(x_resized_dims);
      out->Resize(out_resized_dims);
    }

    Tensor trans_x(x_.type());
    Tensor trans_out(out->type());

    // Transpose input and output in case that axis is 0.
    if (axis == 0) {
      if (out_rank == 1U) {
        trans_out = *out;

        std::vector<int> perm_x{1, 0};
116
        auto x_dims_vec = phi::vectorize(x_.dims());
117 118 119
        for (int i = 0; i < x_.dims().size(); ++i) {
          x_dims_vec[i] = x_.dims()[perm_x[i]];
        }
120
        trans_x.Resize(phi::make_ddim(x_dims_vec));
121
        trans_x.mutable_data<T>(ctx.GetPlace());
122 123
        TransCompute<DeviceContext, T>(
            perm_x.size(), dev_ctx, x_, &trans_x, perm_x);
124 125
      } else {
        std::vector<int> perm_out{1, 0};
126
        auto out_dims_vec = phi::vectorize(out->dims());
127 128 129
        for (int i = 0; i < out->dims().size(); ++i) {
          out_dims_vec[i] = out->dims()[perm_out[i]];
        }
130
        trans_out.Resize(phi::make_ddim(out_dims_vec));
131
        trans_out.mutable_data<T>(ctx.GetPlace());
132 133
        TransCompute<DeviceContext, T>(
            perm_out.size(), dev_ctx, *out, &trans_out, perm_out);
134 135

        std::vector<int> perm_x{2, 1, 0};
136
        auto x_dims_vec = phi::vectorize(x_.dims());
137 138 139
        for (int i = 0; i < x_.dims().size(); ++i) {
          x_dims_vec[i] = x_.dims()[perm_x[i]];
        }
140
        trans_x.Resize(phi::make_ddim(x_dims_vec));
141
        trans_x.mutable_data<T>(ctx.GetPlace());
142 143
        TransCompute<DeviceContext, T>(
            perm_x.size(), dev_ctx, x_, &trans_x, perm_x);
144 145 146 147 148 149
      }
    } else {
      trans_x = x_;
      trans_out = *out;
    }

150 151 152 153 154 155 156 157
    OverlapAddFunctor<DeviceContext, T>()(dev_ctx,
                                          &trans_x,
                                          &trans_out,
                                          seq_length,
                                          frame_length,
                                          n_frames,
                                          hop_length,
                                          /*is_grad*/ false);
158 159 160 161

    // Transpose output in case axis is 0.
    if (axis == 0 && out_rank > 1U) {
      std::vector<int> perm_out{1, 0};
162 163
      TransCompute<DeviceContext, T>(
          perm_out.size(), dev_ctx, trans_out, out, perm_out);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    }

    // Restore output dims when the number of dims is larger than 2.
    if (out_rank > 2) {
      std::vector<int64_t> restored_out_shape;
      for (int i = 0; i < preserved_dims.size(); i++) {
        restored_out_shape.push_back(preserved_dims[i]);
      }

      if (axis == 0) {
        // (seq_length, ...)
        restored_out_shape.insert(restored_out_shape.begin(), seq_length);
      } else {
        // (..., seq_length)
        restored_out_shape.push_back(seq_length);
      }

181
      out->Resize(phi::make_ddim(restored_out_shape));
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    }
  }
};

template <typename DeviceContext, typename T>
class OverlapAddGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    d_x->mutable_data<T>(ctx.GetPlace());
    const size_t d_out_rank = d_out->dims().size();
    const size_t d_x_rank = d_x->dims().size();

    const int hop_length = ctx.Attr<int>("hop_length");
    const int axis = ctx.Attr<int>("axis");
    const int n_frames =
        (axis == 0) ? d_x->dims()[0] : d_x->dims()[d_x_rank - 1];
    const int frame_length =
        (axis == 0) ? d_x->dims()[1] : d_x->dims()[d_x_rank - 2];
    const int seq_length =
        (axis == 0) ? d_out->dims()[0] : d_out->dims()[d_out_rank - 1];

    auto& dev_ctx = ctx.device_context<DeviceContext>();

    // When the number of input dims is larger than 2, it needs to copy
    // from x to resize input into 2d and output into 3d. Morevoer, output
    // dims will be restored at the last step.
    Tensor d_out_(d_out->type());
    d_out_ = *d_out;

    framework::DDim preserved_dims;
    if (d_out_rank > 2) {
      // Save dims used to flatten both input and output tensors and restore
      // output tensor.
      framework::DDim d_x_resized_dims;
      framework::DDim d_out_resized_dims;
      if (axis == 0) {
220
        preserved_dims = phi::slice_ddim(d_out_.dims(), 1, d_out_rank);
221 222
        d_x_resized_dims = {
            n_frames, frame_length, phi::product(preserved_dims)};
223
        d_out_resized_dims = {seq_length, phi::product(preserved_dims)};
224
      } else {
225
        preserved_dims = phi::slice_ddim(d_out_.dims(), 0, d_out_rank - 1);
226 227
        d_x_resized_dims = {
            phi::product(preserved_dims), frame_length, n_frames};
228
        d_out_resized_dims = {phi::product(preserved_dims), seq_length};
229 230 231 232 233 234 235 236 237 238 239 240 241 242
      }
      d_x->Resize(d_x_resized_dims);
      d_out_.Resize(d_out_resized_dims);
    }

    Tensor trans_d_x(d_x->type());
    Tensor trans_d_out(d_out_.type());

    // Transpose input and output in case that axis is 0.
    if (axis == 0) {
      if (d_out_rank == 1U) {
        trans_d_out = d_out_;

        std::vector<int> perm_d_x{1, 0};
243
        auto d_x_dims_vec = phi::vectorize(d_x->dims());
244 245 246
        for (int i = 0; i < d_x->dims().size(); ++i) {
          d_x_dims_vec[i] = d_x->dims()[perm_d_x[i]];
        }
247
        trans_d_x.Resize(phi::make_ddim(d_x_dims_vec));
248
        trans_d_x.mutable_data<T>(ctx.GetPlace());
249 250
        TransCompute<DeviceContext, T>(
            perm_d_x.size(), dev_ctx, *d_x, &trans_d_x, perm_d_x);
251 252
      } else {
        std::vector<int> perm_d_out{1, 0};
253
        auto d_out_dims_vec = phi::vectorize(d_out_.dims());
254 255 256
        for (int i = 0; i < d_out_.dims().size(); ++i) {
          d_out_dims_vec[i] = d_out_.dims()[perm_d_out[i]];
        }
257
        trans_d_out.Resize(phi::make_ddim(d_out_dims_vec));
258
        trans_d_out.mutable_data<T>(ctx.GetPlace());
259 260
        TransCompute<DeviceContext, T>(
            perm_d_out.size(), dev_ctx, d_out_, &trans_d_out, perm_d_out);
261 262

        std::vector<int> perm_d_x{2, 1, 0};
263
        auto d_x_dims_vec = phi::vectorize(d_x->dims());
264 265 266
        for (int i = 0; i < d_x->dims().size(); ++i) {
          d_x_dims_vec[i] = d_x->dims()[perm_d_x[i]];
        }
267
        trans_d_x.Resize(phi::make_ddim(d_x_dims_vec));
268
        trans_d_x.mutable_data<T>(ctx.GetPlace());
269 270
        TransCompute<DeviceContext, T>(
            perm_d_x.size(), dev_ctx, *d_x, &trans_d_x, perm_d_x);
271 272 273 274 275 276
      }
    } else {
      trans_d_x = *d_x;
      trans_d_out = d_out_;
    }

277 278 279 280 281 282
    OverlapAddFunctor<DeviceContext, T>()(dev_ctx,
                                          &trans_d_out,
                                          &trans_d_x,
                                          seq_length,
                                          frame_length,
                                          n_frames,
283 284 285 286 287 288 289
                                          hop_length,
                                          /*is_grad*/ true);

    // Transpose output in case axis is 0.
    if (axis == 0) {
      if (d_out_rank == 1U) {
        std::vector<int> perm_d_x{1, 0};
290 291
        TransCompute<DeviceContext, T>(
            perm_d_x.size(), dev_ctx, trans_d_x, d_x, perm_d_x);
292 293
      } else {
        std::vector<int> perm_d_x{2, 1, 0};
294 295
        TransCompute<DeviceContext, T>(
            perm_d_x.size(), dev_ctx, trans_d_x, d_x, perm_d_x);
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
      }
    }

    // Restore output dims when the number of dims is larger than 2.
    if (d_out_rank > 2) {
      std::vector<int64_t> restored_d_x_shape;
      for (int i = 0; i < preserved_dims.size(); i++) {
        restored_d_x_shape.push_back(preserved_dims[i]);
      }

      if (axis == 0) {
        // (n_frames, frame_length, ...)
        restored_d_x_shape.insert(restored_d_x_shape.begin(), frame_length);
        restored_d_x_shape.insert(restored_d_x_shape.begin(), n_frames);
      } else {
        // (..., frame_length, n_frames)
        restored_d_x_shape.push_back(frame_length);
        restored_d_x_shape.push_back(n_frames);
      }

316
      d_x->Resize(phi::make_ddim(restored_d_x_shape));
317 318 319 320 321 322
    }
  }
};

}  // namespace operators
}  // namespace paddle