fmha_ref.h 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/dropout_impl.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
#include "paddle/fluid/operators/softmax_cudnn_op.cu.h"
#include "paddle/fluid/operators/transpose_op.cu.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class AttnDropoutParam {
 public:
  AttnDropoutParam() {
    is_test_ = false;
    dropout_implementation_ = "downgrade_in_infer";
    dropout_prob_ = 0.5;
    is_upscale_in_train_ = false;
    is_fix_seed_ = false;
    seed_val_ = 0;
    seed_ = nullptr;
  }
  AttnDropoutParam(bool is_test, const std::string dropout_implementation,
                   float dropout_prob, bool is_upscale_in_train,
                   bool is_fix_seed, int seed_val, const Tensor* seed) {
    is_test_ = is_test;
    dropout_implementation_ = dropout_implementation;
    dropout_prob_ = dropout_prob;
    is_upscale_in_train_ = is_upscale_in_train;
    is_fix_seed_ = is_fix_seed;
    seed_val_ = seed_val;
    seed_ = seed;
  }
  bool is_test_;
  std::string dropout_implementation_;
  float dropout_prob_;
  bool is_upscale_in_train_;
  bool is_fix_seed_;
  int seed_val_;
  const Tensor* seed_;
};

template <typename T>
class FMHARef {
 public:
  FMHARef(const platform::CUDADeviceContext& dev_ctx, int64_t batch_size,
          int64_t seq_len, int64_t num_head, int64_t head_dim,
          AttnDropoutParam param)
      : dev_ctx_(dev_ctx),
        batch_size_(batch_size),
        seq_len_(seq_len),
        num_head_(num_head),
        head_dim_(head_dim),
        dropout_param_(param) {}

  ~FMHARef() {}

  void ComputeForward(const Tensor& qkv_input_tensor,
72
                      const Tensor* src_mask_tensor,
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
                      Tensor* transpose_2_out_tensor, Tensor* qk_out_tensor,
                      Tensor* src_mask_out_tensor, Tensor* softmax_out_tensor,
                      Tensor* dropout_mask_out_tensor,
                      Tensor* dropout_out_tensor, Tensor* qktv_out_tensor,
                      Tensor* fmha_out_tensor) {
    // input shape: [bs, seq_len, 3, num_head, head_dim]
    // transpose with perm [2, 0, 1, 3, 4],
    // output_shape: [3, bs, num_head, seq_len, head_dim]
    int ndims = 5;
    std::vector<int> perm_1 = {2, 0, 3, 1, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, qkv_input_tensor, perm_1,
                                transpose_2_out_tensor);

    T* qkv_data = transpose_2_out_tensor->data<T>();
    T* qk_out_data = qk_out_tensor->data<T>();
    T* qktv_out_data = qktv_out_tensor->data<T>();
    T* softmax_out_data = softmax_out_tensor->data<T>();
    T* dropout_out_data = dropout_out_tensor->data<T>();
    T* fmha_out_data = fmha_out_tensor->data<T>();

    int q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
    int k_size = q_size;
    T* q_ptr = qkv_data;
    T* k_ptr = q_ptr + q_size;
    T* v_ptr = k_ptr + k_size;

    // q*k^t, batched_gemm
    CBLAS_TRANSPOSE transA = CblasNoTrans;
    CBLAS_TRANSPOSE transB = CblasTrans;
    auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
    int gemm_n = seq_len_;
    int gemm_k = head_dim_;
    T alpha = static_cast<T>(1.0 / sqrt(head_dim_));
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha, q_ptr,
                     k_ptr, beta, qk_out_data, gemm_batch_size, stride_a,
                     stride_b);
    int softmax_axis = -1;
115 116 117 118 119 120 121
    if (src_mask_tensor != nullptr) {
      std::vector<const Tensor*> ins;
      std::vector<Tensor*> outs;
      ins.emplace_back(qk_out_tensor);
      ins.emplace_back(src_mask_tensor);
      outs.emplace_back(src_mask_out_tensor);
      int elewise_add_axis = -1;
122 123
      paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary,
                                                     T, T>(
124
          dev_ctx_, ins, &outs, elewise_add_axis, AddFunctor<T>());
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      SoftmaxForwardCUDAKernelDriver<T>(dev_ctx_, *src_mask_out_tensor,
                                        softmax_axis, softmax_out_tensor);
    } else {
      SoftmaxForwardCUDAKernelDriver<T>(dev_ctx_, *qk_out_tensor, softmax_axis,
                                        softmax_out_tensor);
    }

    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    alpha = static_cast<T>(1.0);
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;

    if (dropout_param_.dropout_prob_) {
      DropoutFwGPUKernelDriver<T>(
          dev_ctx_, dropout_param_.is_test_,
          static_cast<const std::string>(
              dropout_param_.dropout_implementation_),
          dropout_param_.dropout_prob_, dropout_param_.is_upscale_in_train_,
          dropout_param_.is_fix_seed_, dropout_param_.seed_val_,
          static_cast<const Tensor&>(*softmax_out_tensor), dropout_param_.seed_,
          dropout_mask_out_tensor, dropout_out_tensor);
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       dropout_out_data, v_ptr, beta, qktv_out_data,
                       gemm_batch_size, stride_a, stride_b);
    } else {
      // softmax_out * v, batched_gemm
      // output shape: [batch_size, num_heads, seq_len, head_dim]
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       softmax_out_data, v_ptr, beta, qktv_out_data,
                       gemm_batch_size, stride_a, stride_b);
    }
    // transpose: [0, 2, 1, 3]
    // output shape: [batch_size, seq_len, num_heads, head_dim]
    std::vector<int> perm_3 = {0, 2, 1, 3};
    ndims = 4;
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, *qktv_out_tensor, perm_3,
                                fmha_out_tensor);
  }

  void ComputeBackward(
169
      const Tensor& transpose_2_out_tensor, const Tensor* src_mask_tensor,
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
      const Tensor& softmax_out_tensor, const Tensor& dropout_mask_out_tensor,
      const Tensor& dropout_out_tensor, const Tensor& qk_out_tensor,
      const Tensor& src_mask_out_tensor, const Tensor& fmha_out_grad_tensor,
      Tensor* qktv_out_grad_tensor, Tensor* dropout_out_grad_tensor,
      Tensor* softmax_out_grad_tensor, Tensor* src_mask_out_grad_tensor,
      Tensor* qk_out_grad_tensor, Tensor* transpose_2_out_grad_tensor,
      Tensor* src_mask_grad_tensor, Tensor* qkv_input_grad_tensor) {
    auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx_);
    int q_size = batch_size_ * seq_len_ * num_head_ * head_dim_;
    int k_size = q_size;
    int softmax_axis = -1;

    T* qkv_grad_data = transpose_2_out_grad_tensor->data<T>();
    T* q_grad_ptr = qkv_grad_data;
    T* k_grad_ptr = q_grad_ptr + q_size;
    T* v_grad_ptr = k_grad_ptr + k_size;
    const T* qkv_data = transpose_2_out_tensor.data<T>();
    const T* q_ptr = qkv_data;
    const T* k_ptr = q_ptr + q_size;
    const T* v_ptr = k_ptr + k_size;

    const T* softmax_out_data = softmax_out_tensor.data<T>();
    T* softmax_out_grad_data = softmax_out_grad_tensor->data<T>();
    const T* dropout_out_data = dropout_out_tensor.data<T>();
    T* dropout_out_grad_data = dropout_out_grad_tensor->data<T>();
    T* qktv_out_grad_data = qktv_out_grad_tensor->data<T>();

    // transpose bw
    int ndims = 4;
    std::vector<int> perm_3 = {0, 2, 1, 3};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, fmha_out_grad_tensor, perm_3,
                                qktv_out_grad_tensor);

    // recall batchedgemm(nn) fw: softmax_out_data(x) * v_ptr(y) =
    // qktv_out_data(out)
    CBLAS_TRANSPOSE transA = CblasTrans;
    CBLAS_TRANSPOSE transB = CblasNoTrans;
    int gemm_batch_size = batch_size_ * num_head_;
    int gemm_m = seq_len_;
    int gemm_n = head_dim_;
    int gemm_k = seq_len_;
    T alpha = static_cast<T>(1.0);
    T beta = static_cast<T>(0.0);
    int64_t stride_a = gemm_m * gemm_k;
    int64_t stride_b = gemm_k * gemm_n;
    // bw: dy = x^t * dout
    if (dropout_param_.dropout_prob_) {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       dropout_out_data, qktv_out_grad_data, beta, v_grad_ptr,
                       gemm_batch_size, stride_a, stride_b);
    } else {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       softmax_out_data, qktv_out_grad_data, beta, v_grad_ptr,
                       gemm_batch_size, stride_a, stride_b);
    }
    // bw: dx = dout * y^t
    transA = CblasNoTrans;
    transB = CblasTrans;
    gemm_m = seq_len_;
    gemm_n = seq_len_;
    gemm_k = head_dim_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    if (dropout_param_.dropout_prob_) {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       qktv_out_grad_data, v_ptr, beta, dropout_out_grad_data,
                       gemm_batch_size, stride_a, stride_b);
    } else {
      blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                       qktv_out_grad_data, v_ptr, beta, softmax_out_grad_data,
                       gemm_batch_size, stride_a, stride_b);
    }
    // dropout bw
    if (dropout_param_.dropout_prob_) {
      DropoutGradGPUKernelDriver<T>(
          dev_ctx_, static_cast<const std::string>(
                        dropout_param_.dropout_implementation_),
          dropout_param_.dropout_prob_,
          static_cast<const Tensor&>(*dropout_out_grad_tensor),
          dropout_mask_out_tensor, softmax_out_grad_tensor->numel(),
          softmax_out_grad_tensor);
    }

253
    if (src_mask_tensor != nullptr) {
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
      SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_, softmax_out_tensor,
                                         *softmax_out_grad_tensor, softmax_axis,
                                         src_mask_out_grad_tensor);

      // recall LaunchElementwiseCudaKernel fw:  src_mask_out = qk_out +
      // src_mask
      // Special case when dy is not needed and dx doesn't reduce
      if (qk_out_grad_tensor != nullptr && src_mask_grad_tensor == nullptr &&
          qk_out_tensor.dims() == src_mask_out_tensor.dims()) {
        VLOG(4) << "Special case when dy is not needed and dx doesn't "
                   "reduce";
        framework::TensorCopy(*src_mask_out_grad_tensor, dev_ctx_.GetPlace(),
                              dev_ctx_, qk_out_grad_tensor);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Only used for the backward elementwise_add op when"
            "dy is not needed and dx is not reduce"));
        return;
      }

    } else {
      SoftmaxBackwardCUDAKernelDriver<T>(dev_ctx_, softmax_out_tensor,
                                         *softmax_out_grad_tensor, softmax_axis,
                                         qk_out_grad_tensor);
    }

    T* qk_out_grad_data = qk_out_grad_tensor->data<T>();
    alpha = static_cast<T>(1.0 / sqrt(head_dim_));
    // recall batchedgemm(nt) fw:  q_ptr * (k_ptr)^t = qk_out
    // bw: dy (seq_len * head_dim) = (dout)^t * x
    transA = CblasTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                     qk_out_grad_data, q_ptr, beta, k_grad_ptr, gemm_batch_size,
                     stride_a, stride_b);
    // dx (seq_len * head_dim) = dout * y
    transA = CblasNoTrans;
    transB = CblasNoTrans;
    gemm_m = seq_len_;
    gemm_n = head_dim_;
    gemm_k = seq_len_;
    stride_a = gemm_m * gemm_k;
    stride_b = gemm_k * gemm_n;
    blas.BatchedGEMM(transA, transB, gemm_m, gemm_n, gemm_k, alpha,
                     qk_out_grad_data, k_ptr, beta, q_grad_ptr, gemm_batch_size,
                     stride_a, stride_b);

    // transpose bw
    ndims = 5;
    std::vector<int> perm_1 = {1, 3, 0, 2, 4};
    TransposeGPUKernelDriver<T>(dev_ctx_, ndims, *transpose_2_out_grad_tensor,
                                perm_1, qkv_input_grad_tensor);
  }

 private:
  const platform::CUDADeviceContext& dev_ctx_;

  int64_t batch_size_;
  int64_t seq_len_;
  int64_t num_head_;
  int64_t head_dim_;

  AttnDropoutParam dropout_param_;
};

}  // namespace operators
}  // namespace paddle