elementwise_mul_op.cc 9.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include <memory>
S
sneaxiy 已提交
17
#include <string>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/platform/complex.h"
S
sneaxiy 已提交
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VMUL(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseMul<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x * eigen_y;
  }
};

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class ElementwiseMulOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Mul"; }
  std::string GetEquation() const override { return "Out = X \\\\odot Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Multiply two tensors element-wise";
  }
};

H
hong 已提交
74 75
template <typename T>
class ElementwiseMulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
76
 public:
H
hong 已提交
77
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
78 79

 protected:
80
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
81
    op->SetType("elementwise_mul_grad");
H
hong 已提交
82 83 84 85 86 87
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
S
sneaxiy 已提交
88 89 90
  }
};

H
hong 已提交
91 92
template <typename T>
class ElementwiseMulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
93
 public:
H
hong 已提交
94
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
95 96

 protected:
97
  void Apply(GradOpPtr<T> op) const override {
98
    op->SetType("elementwise_mul_grad_grad");
H
hong 已提交
99 100 101 102 103
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
104

H
hong 已提交
105
    op->SetAttrMap(this->Attrs());
106

H
hong 已提交
107 108 109
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
110 111 112
  }
};

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
template <typename T>
class ElementwiseMulTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elementwise_mul_triple_grad");
    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("D_DY", this->OutputGrad(framework::GradVarName("Y")));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    op->SetAttrMap(this->Attrs());

    // set outputs
    op->SetOutput("D_X", this->InputGrad("X"));
    op->SetOutput("D_Y", this->InputGrad("Y"));
    op->SetOutput("D_DOut", this->InputGrad("DOut"));
    op->SetOutput("D_DDX", this->InputGrad("DDX"));
    op->SetOutput("D_DDY", this->InputGrad("DDY"));
  }
};

S
sneaxiy 已提交
142 143 144
}  // namespace operators
}  // namespace paddle

145
namespace ops = paddle::operators;
146
REGISTER_OPERATOR(elementwise_mul, ops::ElementwiseMulOp,
S
sneaxiy 已提交
147
                  ops::ElementwiseMulOpMaker, ops::ElementwiseOpInferVarType,
H
hong 已提交
148 149 150 151 152 153 154
                  ops::ElementwiseMulOpGradMaker<paddle::framework::OpDesc>,
                  ops::ElementwiseMulOpGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elementwise_mul_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseMulDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulDoubleGradMaker<paddle::imperative::OpBase>);

155 156 157 158 159 160 161
REGISTER_OPERATOR(
    elementwise_mul_grad_grad, ops::ElementwiseOpDoubleGrad,
    ops::ElementwiseDoubleGradOpInplaceInferer,
    ops::ElementwiseMulTripleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseMulTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(elementwise_mul_triple_grad, ops::ElementwiseOpTripleGrad);
S
sneaxiy 已提交
162

163 164
REGISTER_OP_CPU_KERNEL(
    elementwise_mul,
Q
QI JUN 已提交
165 166 167
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int>,
168
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, int64_t>,
W
will-jl944 已提交
169
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext, bool>,
170
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext,
171
                              paddle::platform::complex<float>>,
172
    ops::ElementwiseMulKernel<paddle::platform::CPUDeviceContext,
173
                              paddle::platform::complex<double>>);
174 175
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad,
Q
QI JUN 已提交
176 177 178
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int>,
179
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
W
will-jl944 已提交
180
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext, bool>,
181
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
182
                                  paddle::platform::complex<float>>,
183
    ops::ElementwiseMulGradKernel<paddle::platform::CPUDeviceContext,
184
                                  paddle::platform::complex<double>>);
185 186 187 188 189 190 191 192 193
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
194
                                        int64_t>,
W
will-jl944 已提交
195 196
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        bool>,
197
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
198
                                        paddle::platform::complex<float>>,
199
    ops::ElementwiseMulDoubleGradKernel<paddle::platform::CPUDeviceContext,
200
                                        paddle::platform::complex<double>>);
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
REGISTER_OP_CPU_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        bool>,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex<double>>);
217 218 219 220 221 222 223 224 225

REGISTER_OP_VERSION(elementwise_mul)
    .AddCheckpoint(
        R"ROC(Register elementwise_mul for adding the attribute of Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_mul.",
            1.0f));