test_auto_parallel_partitioner.py 48.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import unittest.mock

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
21
import paddle.static as static
22
import paddle.tensor as tensor
23 24
import paddle.utils as utils
from paddle.distributed import fleet
25
from paddle.distributed.auto_parallel.completion import Completer
26
from paddle.distributed.auto_parallel.dist_context import DistributedContext
27
from paddle.distributed.auto_parallel.partitioner import Partitioner
28
from paddle.distributed.auto_parallel.process_group import new_process_group
29 30
from paddle.distributed.auto_parallel.utils import _get_comm_group
from paddle.distributed.fleet import auto
31 32

paddle.enable_static()
33
_global_parallel_strategy = None
34 35 36 37 38 39 40 41
_global_process_mesh = None


def get_programs(annotated_func):
    train_program = static.Program()
    start_program = static.Program()
    dist_context = DistributedContext()
    global _global_process_mesh
42
    dist_context.process_mesh = _global_process_mesh
43
    train_program, start_program = annotated_func(train_program, start_program)
44 45
    completer = Completer(dist_context)
    complete_train_program = completer.complete_forward_annotation(
46 47
        train_program
    )
48
    dist_context.block_state.parse_forward_blocks(complete_train_program)
49 50 51

    rank_id = 3
    dist_strategy = fleet.DistributedStrategy()
52
    partitioner = Partitioner(dist_context, rank_id)
53 54 55 56 57
    (
        test_auto_parallel_dist_main_prog,
        test_auto_parallel_dist_startup_prog,
        _,
    ) = partitioner.partition(complete_train_program, start_program, [])
58

59 60 61 62 63 64 65
    return (
        complete_train_program,
        start_program,
        test_auto_parallel_dist_main_prog,
        test_auto_parallel_dist_startup_prog,
        dist_context,
    )
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95


def is_all_parameters_shape_equal(prog1, prog2):

    params1 = prog1.all_parameters()
    params2 = prog2.all_parameters()
    params1.sort(key=lambda x: x.name)
    params2.sort(key=lambda x: x.name)
    shape1 = [tensor.shape for tensor in params1]
    shape2 = [tensor.shape for tensor in params2]

    if len(shape1) != len(shape2):
        return False
    for i in range(len(shape1)):
        if shape1[i] != shape2[i]:
            return False
    return True


def check_tensor_split(prog1, varnames1, prog2, varnames2, axis, nsplit):

    for i in range(len(varnames1)):
        var1 = prog1.global_block().var(varnames1[i])
        var2 = prog2.global_block().var(varnames2[i])
        if var1.shape[axis] != (var2.shape[axis] // nsplit):
            return False

    return True


96 97 98 99 100 101 102 103 104 105
def initialization_check(
    mode,
    dist_context,
    dist_startup_prog,
    serial_startup_prog,
    var_need_broadcast,
    process_mesh,
    mp_parallel_axis,
    dp_parallel_axis,
):
106
    if 'mp' in mode:
107
        group_ranks = _get_comm_group(
108
            process_mesh.process_ids, process_mesh.shape, mp_parallel_axis, 3
109
        )
110 111
        mp_ring_id = new_process_group(group_ranks).id
        broadcast_ops = [
112 113 114 115 116 117
            op
            for op in dist_startup_prog.global_block().ops
            if (
                op.type == "c_broadcast"
                and op.desc.attr("ring_id") == mp_ring_id
            )
118 119
        ]
        broadcast_varnames = sorted(
120 121
            [op.desc.output_arg_names()[0] for op in broadcast_ops]
        )
122 123 124 125
        if broadcast_varnames != var_need_broadcast:
            return False

    if 'dp' in mode:
126
        group_ranks = _get_comm_group(
127
            process_mesh.process_ids, process_mesh.shape, dp_parallel_axis, 3
128
        )
129 130
        dp_ring_id = new_process_group(group_ranks).id
        nparam = len(serial_startup_prog.all_parameters())
131 132 133 134 135 136 137 138 139 140
        nbroadcast_dp = len(
            [
                op
                for op in dist_startup_prog.global_block().ops
                if (
                    op.type == "c_broadcast"
                    and op.desc.attr("ring_id") == dp_ring_id
                )
            ]
        )
141 142 143 144
        if nparam != nbroadcast_dp:
            return False

    if "dp" in mode and 'mp' in mode:
145 146 147 148 149 150 151
        nbroadcast = len(
            [
                op
                for op in dist_startup_prog.global_block().ops
                if op.type == "c_broadcast"
            ]
        )
152 153 154 155 156 157
        if len(var_need_broadcast) + nbroadcast_dp != nbroadcast:
            return False

    return True


158 159 160
def get_input_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.input_arg_names()
    var = main_program.global_block().var(varname[0])
161
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
162 163 164 165 166 167
    return dist_attr


def get_output_var_dist_attr(op, main_program, dist_context):
    varname = op.desc.output_arg_names()
    var = main_program.global_block().var(varname[0])
168
    dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
169 170 171 172 173
    return dist_attr


def check_equal_var_dist_attr(serial_dist_attr, dist_attr):
    equal = True
174 175 176 177
    if (
        serial_dist_attr.process_mesh != dist_attr.process_mesh
        or serial_dist_attr.dims_mapping != dist_attr.dims_mapping
    ):
178 179 180 181
        equal = False
    return equal


182 183 184
def check_equal_dist_op_attr(
    dist_context, dist_main_prog, serial_op, dist_ops, dist_op_idx
):
185 186
    equal = True
    # get serial op's process_mesh and impl_idx
187 188 189
    serial_op_dist_attr = dist_context.get_op_dist_attr_for_program(serial_op)
    serial_process_mesh = serial_op_dist_attr.process_mesh
    serial_impl_idx = serial_op_dist_attr.impl_idx
190 191 192

    # check dist_attr between serial op and dist op
    for i in dist_op_idx:
193
        op_dist_attr = dist_context.get_op_dist_attr_for_program(dist_ops[i])
194 195
        for in_varname in dist_ops[i].desc.input_arg_names():
            in_var = dist_main_prog.global_block().var(in_varname)
196
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
197 198
                in_var
            )
199
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
200
            in_var_dims_mapping = op_dist_attr.get_input_dims_mapping(
201 202
                in_varname
            )
203 204 205 206
            if tensor_dims_mapping != in_var_dims_mapping:
                equal = False
        for out_varname in dist_ops[i].desc.output_arg_names():
            out_var = dist_main_prog.global_block().var(out_varname)
207
            tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(
208 209
                out_var
            )
210
            tensor_dims_mapping = tensor_dist_attr.dims_mapping
211
            out_var_dims_mapping = op_dist_attr.get_output_dims_mapping(
212 213
                out_varname
            )
214 215
            if tensor_dims_mapping != out_var_dims_mapping:
                equal = False
216 217
        dist_op_process_mesh = op_dist_attr.process_mesh
        dist_op_impl_idx = op_dist_attr.impl_idx
218 219 220 221 222
        if (
            serial_op.desc.id() == dist_ops[i].desc.id()
            or serial_process_mesh != dist_op_process_mesh
            or serial_impl_idx != dist_op_impl_idx
        ):
223 224 225 226 227
            equal = False

    return equal


228 229 230
def distributed_attr_check_for_dist_op(
    serial_main_prog, dist_main_prog, dist_context, serial_op_idx, dist_op_idx
):
231 232 233 234 235 236 237 238 239 240 241

    equal = True
    serial_ops = serial_main_prog.global_block().ops
    dist_ops = dist_main_prog.global_block().ops

    for i in range(len(serial_op_idx)):
        serial_op = serial_ops[serial_op_idx[i]]
        dist_op_0 = dist_ops[dist_op_idx[i][0]]
        if dist_op_0.type == "c_identity":
            # serial op input's dist_attr
            serial_in_dist_attr = get_input_var_dist_attr(
242 243
                serial_op, serial_main_prog, dist_context
            )
244 245
            # c_identity output's(new var) dist_attr
            identity_out_dist_attr = get_output_var_dist_attr(
246 247
                dist_op_0, dist_main_prog, dist_context
            )
248
            # check var dist_attr
249 250 251
            equal = check_equal_var_dist_attr(
                serial_in_dist_attr, identity_out_dist_attr
            )
252 253 254
        else:
            # serial op output's dist_attr
            serial_out_dist_attr = get_output_var_dist_attr(
255 256
                serial_op, serial_main_prog, dist_context
            )
257
            # dist op output's(new var) dist_attr
258 259 260
            out_dist_attr = get_output_var_dist_attr(
                dist_op_0, dist_main_prog, dist_context
            )
261
            # check var dist_attr
262 263 264
            equal = check_equal_var_dist_attr(
                serial_out_dist_attr, out_dist_attr
            )
265

266
        # check op's dist_attr
267 268 269
        equal = check_equal_dist_op_attr(
            dist_context, dist_main_prog, serial_op, dist_ops, dist_op_idx[i]
        )
270 271 272 273 274 275 276

    return equal


def distributed_attr_check_for_program(dist_main_prog, dist_context):
    have_dist_attr = True
    for block in dist_main_prog.blocks:
277 278
        for var in block.vars.values():
            var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
279 280 281 282
            if var_dist_attr is None:
                have_dist_attr = False

        for op in block.ops:
283
            op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
284 285 286 287 288 289
            if op_dist_attr is None:
                have_dist_attr = False

    return have_dist_attr


290
class MLPLayer(nn.Layer):
291 292 293 294 295 296 297
    def __init__(
        self,
        hidden_size=1024,
        intermediate_size=4 * 1024,
        dropout_ratio=0.1,
        initializer_range=0.02,
    ):
298
        super().__init__()
299 300
        d_model = hidden_size
        dim_feedforward = intermediate_size
301
        weight_attr = paddle.ParamAttr(
302 303
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range)
        )
304 305
        bias_attr = None

306 307 308 309 310 311
        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr
        )
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr
        )
312 313 314 315
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
316
        if _global_parallel_strategy in ["mp", "dp_mp"]:
317 318 319 320 321 322 323 324 325 326
            auto.shard_tensor(
                self.linear0.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
            auto.shard_tensor(
                self.linear1.weight,
                process_mesh=_global_process_mesh,
                shard_spec=["mp", None],
            )
327
        else:
328 329 330 331 332 333 334 335 336 337
            auto.shard_tensor(
                self.linear0.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, None],
            )
            auto.shard_tensor(
                self.linear1.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, None],
            )
338 339 340 341 342 343 344 345 346 347 348

        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = self.dropout(out)

        return out


def mlp_pretrain_forward(train_program, start_program):
349 350 351
    with static.program_guard(
        train_program, start_program
    ), utils.unique_name.guard():
352 353 354
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
355 356 357 358 359
        input = static.data(
            name="input",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32',
        )
360

361
        if _global_parallel_strategy in ["dp", "dp_mp"]:
362 363 364 365 366 367 368 369 370 371 372 373
            auto.shard_tensor(
                input,
                process_mesh=_global_process_mesh,
                shard_spec=["dp", None, None],
            )

        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            dropout_ratio=0.1,
            initializer_range=0.02,
        )
374 375 376 377 378 379
        out = mlp(input)
    return train_program, start_program


class TestMLPAutoPartitioner(unittest.TestCase):
    def test_mlp_dp(self):
380 381
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
382
        global _global_process_mesh
383 384 385 386 387 388 389 390 391 392 393
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], dim_names=["dp"]
        )

        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(mlp_pretrain_forward)
394 395 396

        # parameter should not be partitioned
        self.assertTrue(
397 398
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog)
        )
399
        self.assertTrue(
400 401 402 403
            is_all_parameters_shape_equal(
                serial_startup_prog, dist_startup_prog
            )
        )
404 405 406 407 408 409 410 411

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

412
        # parameter initialization
413 414
        var_need_broadcast = []
        self.assertTrue(
415 416 417 418 419 420 421 422 423 424 425
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=None,
                dp_parallel_axis=0,
            )
        )
426 427

    def test_mlp_mp(self):
428 429
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
430
        global _global_process_mesh
431 432 433 434 435 436 437 438 439 440
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], dim_names=["mp"]
        )
        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(mlp_pretrain_forward)
441 442 443 444 445 446

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
447 448 449 450
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 1, nrank
            )
        )
451 452
        weights = ['linear_0.b_0']
        self.assertTrue(
453 454 455 456
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
457 458 459
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
460 461 462 463
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
464 465
        weights = ['linear_1.b_0']
        self.assertTrue(
466 467 468 469
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, 1
            )
        )
470 471 472 473 474

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
475 476 477 478 479 480 481 482 483
            'layer_norm',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'gelu',
            'matmul_v2',
            'c_allreduce_sum',
            'elementwise_add',
            'dropout',
484 485 486
        ]
        self.assertTrue(dist_ops == ref_ops)

487
        # parameter initialization
488
        var_need_broadcast = sorted(
489 490
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0']
        )
491
        self.assertTrue(
492 493 494 495 496 497 498 499 500 501 502
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=0,
                dp_parallel_axis=None,
            )
        )
503

504 505
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
506 507
            distributed_attr_check_for_program(dist_main_prog, dist_context)
        )
508 509 510 511
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
512 513 514 515 516 517 518 519
            distributed_attr_check_for_dist_op(
                serial_main_prog,
                dist_main_prog,
                dist_context,
                serial_op_idx,
                dist_op_idx,
            )
        )
520

521
    def test_mlp_dp_mp(self):
522 523
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
524
        global _global_process_mesh
525 526 527 528 529 530 531 532 533 534
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], dim_names=["dp", "mp"]
        )
        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(mlp_pretrain_forward)
535 536 537 538 539 540

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0']
        self.assertTrue(
541 542 543 544
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 1, nrank
            )
        )
545 546
        weights = ['linear_0.b_0']
        self.assertTrue(
547 548 549 550
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
551 552 553
        # row parallel
        weights = ['linear_1.w_0']
        self.assertTrue(
554 555 556 557
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
558 559
        weights = ['linear_1.b_0']
        self.assertTrue(
560 561 562 563
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, 1
            )
        )
564 565 566 567 568

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
569 570 571 572 573 574 575 576 577
            'layer_norm',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'gelu',
            'matmul_v2',
            'c_allreduce_sum',
            'elementwise_add',
            'dropout',
578 579 580 581 582
        ]
        self.assertTrue(dist_ops == ref_ops)

        # parameter initialization
        var_need_broadcast = sorted(
583 584
            ['layer_norm_0.b_0', 'layer_norm_0.w_0', 'linear_1.b_0']
        )
585
        self.assertTrue(
586 587 588 589 590 591 592 593 594 595 596
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0,
            )
        )
597

598 599
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
600 601
            distributed_attr_check_for_program(dist_main_prog, dist_context)
        )
602 603 604 605
        # check distribured attr for dist op
        serial_op_idx = [1, 4]
        dist_op_idx = [[1, 2], [5, 6]]
        self.assertTrue(
606 607 608 609 610 611 612 613
            distributed_attr_check_for_dist_op(
                serial_main_prog,
                dist_main_prog,
                dist_context,
                serial_op_idx,
                dist_op_idx,
            )
        )
614

615 616

class AttentionLayer(nn.Layer):
617 618 619 620 621 622 623 624 625
    def __init__(
        self,
        hidden_size=1024,
        sequence_len=512,
        intermediate_size=4 * 1024,
        num_heads=16,
        dropout_ratio=0.1,
        initializer_range=0.02,
    ):
626
        super().__init__()
627 628 629 630 631 632 633
        self.hidden_size = hidden_size
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.head_dim = self.embed_dim // self.num_heads
634 635 636
        assert (
            self.head_dim * self.num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"
637 638 639 640
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None
641
        weight_attr = paddle.ParamAttr(
642 643
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range)
        )
644 645
        bias_attr = None

646 647 648 649 650 651 652 653 654 655 656 657
        self.q_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
        self.k_proj = nn.Linear(
            self.kdim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
        self.v_proj = nn.Linear(
            self.vdim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
        self.out_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
658 659

    def forward(self, input):
660
        if _global_parallel_strategy in ["dp", "dp_mp"]:
661 662 663 664 665
            auto.shard_tensor(
                input,
                process_mesh=_global_process_mesh,
                shard_spec=["dp", None, None],
            )
666 667 668 669 670 671 672 673

        q = self.q_proj(input)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(input)
        v = self.v_proj(input)

674
        if _global_parallel_strategy in ["mp", "dp_mp"]:
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
            auto.shard_tensor(
                self.q_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
            auto.shard_tensor(
                self.k_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
            auto.shard_tensor(
                self.v_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
690 691 692 693 694 695 696

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
K
kangguangli 已提交
697 698
        product = tensor.matmul(x=q, y=k, transpose_y=True)
        product = tensor.scale(product, scale=self.head_dim**-0.5)
699 700 701 702 703 704 705

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
706 707 708 709 710 711
            weights = F.dropout(
                weights,
                self.dropout_ratio,
                training=self.training,
                mode="upscale_in_train",
            )
712 713 714 715 716 717 718 719 720

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)
721 722

        if _global_parallel_strategy in ["mp", "dp_mp"]:
723 724 725 726 727
            auto.shard_tensor(
                self.out_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=["mp", None],
            )
728 729 730 731 732

        return out


def attn_pretrain_forward(train_program, start_program):
733 734 735
    with static.program_guard(
        train_program, start_program
    ), utils.unique_name.guard():
736 737 738
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
739 740 741 742 743 744 745 746 747 748 749 750 751
        input = static.data(
            name="query",
            shape=[batch_size, sequence_len, hidden_size],
            dtype='float32',
        )
        attn = AttentionLayer(
            hidden_size=hidden_size,
            sequence_len=sequence_len,
            intermediate_size=4 * hidden_size,
            num_heads=16,
            dropout_ratio=0.1,
            initializer_range=0.02,
        )
752 753 754 755 756 757 758
        out = attn(input)

    return train_program, start_program


class TestAttentionAutoPartitioner(unittest.TestCase):
    def test_attn_dp(self):
759 760
        global _global_parallel_strategy
        _global_parallel_strategy = "dp"
761
        global _global_process_mesh
762 763 764 765 766 767 768 769 770 771 772
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], dim_names=["dp"]
        )

        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(attn_pretrain_forward)
773 774
        # parameter should not be partitioned
        self.assertTrue(
775 776
            is_all_parameters_shape_equal(serial_main_prog, dist_main_prog)
        )
777
        self.assertTrue(
778 779 780 781
            is_all_parameters_shape_equal(
                serial_startup_prog, dist_startup_prog
            )
        )
782 783 784 785 786 787 788 789

        # op in main prog should be the same
        serial_ops = serial_main_prog.global_block().ops
        dist_ops = dist_main_prog.global_block().ops
        serial_ops = [op.type for op in serial_ops]
        dist_ops = [op.type for op in dist_ops]
        self.assertTrue(serial_ops == dist_ops)

790
        # parameter initialization
791 792
        var_need_broadcast = []
        self.assertTrue(
793 794 795 796 797 798 799 800 801 802 803
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=None,
                dp_parallel_axis=0,
            )
        )
804 805

    def test_attn_mp(self):
806 807
        global _global_parallel_strategy
        _global_parallel_strategy = "mp"
808
        global _global_process_mesh
809 810 811 812 813 814 815 816 817 818 819
        _global_process_mesh = auto.ProcessMesh(
            mesh=[0, 1, 2, 3], dim_names=["mp"]
        )

        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(attn_pretrain_forward)
820 821 822 823 824 825

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
826 827 828 829
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 1, nrank
            )
        )
830 831
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
832 833 834 835
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
836 837 838
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
839 840 841 842
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
843 844
        weights = ['linear_3.b_0']
        self.assertTrue(
845 846 847 848
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, 1
            )
        )
849 850 851 852 853

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'reshape2',
            'transpose2',
K
kangguangli 已提交
869 870
            'matmul_v2',
            "scale",
871 872 873 874 875 876 877 878
            'softmax',
            'dropout',
            'matmul_v2',
            'transpose2',
            'reshape2',
            'matmul_v2',
            'c_allreduce_sum',
            'elementwise_add',
879 880 881
        ]
        self.assertTrue(dist_ops == ref_ops)

882
        # parameter initialization
883 884
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
885 886 887 888 889 890 891 892 893 894 895
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=0,
                dp_parallel_axis=None,
            )
        )
896

897 898
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
899 900
            distributed_attr_check_for_program(dist_main_prog, dist_context)
        )
901 902 903 904
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
905 906 907 908 909 910 911 912
            distributed_attr_check_for_dist_op(
                serial_main_prog,
                dist_main_prog,
                dist_context,
                serial_op_idx,
                dist_op_idx,
            )
        )
913

914
    def test_attn_dp_mp(self):
915 916
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
917
        global _global_process_mesh
918 919 920 921 922 923 924 925 926 927 928
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], dim_names=["dp", "mp"]
        )

        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(attn_pretrain_forward)
929 930 931 932 933 934

        # param should be partition
        nrank = 4
        # col parallel
        weights = ['linear_0.w_0', 'linear_1.w_0', 'linear_2.w_0']
        self.assertTrue(
935 936 937 938
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 1, nrank
            )
        )
939 940
        weights = ['linear_0.b_0', 'linear_1.b_0', 'linear_2.b_0']
        self.assertTrue(
941 942 943 944
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
945 946 947
        # row parallel
        weights = ['linear_3.w_0']
        self.assertTrue(
948 949 950 951
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
952 953
        weights = ['linear_3.b_0']
        self.assertTrue(
954 955 956 957
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, 1
            )
        )
958 959 960 961 962

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'reshape2',
            'transpose2',
K
kangguangli 已提交
978 979
            'matmul_v2',
            "scale",
980 981 982 983 984 985 986 987
            'softmax',
            'dropout',
            'matmul_v2',
            'transpose2',
            'reshape2',
            'matmul_v2',
            'c_allreduce_sum',
            'elementwise_add',
988 989 990
        ]
        self.assertTrue(dist_ops == ref_ops)

991
        # parameter initialization
992 993
        var_need_broadcast = ['linear_3.b_0']
        self.assertTrue(
994 995 996 997 998 999 1000 1001 1002 1003 1004
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0,
            )
        )
1005

1006 1007
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
1008 1009
            distributed_attr_check_for_program(dist_main_prog, dist_context)
        )
1010 1011 1012 1013
        # check distribured attr for dist op
        serial_op_idx = [0, 4, 6, 18]
        dist_op_idx = [[0, 1], [5, 6], [8, 9], [21, 22]]
        self.assertTrue(
1014 1015 1016 1017 1018 1019 1020 1021
            distributed_attr_check_for_dist_op(
                serial_main_prog,
                dist_main_prog,
                dist_context,
                serial_op_idx,
                dist_op_idx,
            )
        )
1022

1023 1024

class DecoderLayer(nn.Layer):
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    def __init__(
        self,
        vocab_size=32768,
        hidden_size=1024,
        sequence_len=512,
        max_position_embeddings=512,
        intermediate_size=4 * 1024,
        num_heads=16,
        dropout_ratio=0.1,
        initializer_range=0.02,
    ):
1036
        super().__init__()
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.max_position_embeddings = max_position_embeddings
        self.sequence_len = sequence_len
        self.embed_dim = self.hidden_size
        self.kdim = self.embed_dim
        self.vdim = self.embed_dim
        self.num_heads = num_heads
        self.dropout_ratio = dropout_ratio
        self.initializer_range = initializer_range
        self.training = True
        self.attn_mask = None

        self.head_dim = self.embed_dim // self.num_heads
1051 1052 1053
        assert (
            self.head_dim * self.num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"
1054 1055 1056
        self.word_embeddings = nn.Embedding(
            self.vocab_size,
            self.hidden_size,
1057 1058 1059 1060 1061 1062 1063
            weight_attr=paddle.ParamAttr(
                name="word_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=self.initializer_range
                ),
            ),
        )
1064 1065 1066
        self.position_embeddings = nn.Embedding(
            self.max_position_embeddings,
            self.hidden_size,
1067 1068 1069 1070 1071 1072 1073
            weight_attr=paddle.ParamAttr(
                name="pos_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=self.initializer_range
                ),
            ),
        )
1074

1075 1076 1077 1078 1079
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(
                mean=0.0, std=self.initializer_range
            )
        )
1080
        bias_attr = None
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        self.q_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
        self.k_proj = nn.Linear(
            self.kdim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
        self.v_proj = nn.Linear(
            self.vdim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
        self.out_proj = nn.Linear(
            self.embed_dim, self.embed_dim, weight_attr, bias_attr=bias_attr
        )
1093 1094 1095 1096

        intermediate_size = 4 * self.hidden_size
        d_model = self.hidden_size
        dim_feedforward = intermediate_size
1097 1098 1099 1100 1101
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(
                mean=0.0, std=self.initializer_range
            )
        )
1102
        bias_attr = None
1103 1104 1105 1106 1107 1108
        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr
        )
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr
        )
1109 1110 1111 1112 1113 1114
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(self.dropout_ratio)
        self.dropout2 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")
        self.dropout3 = nn.Dropout(self.dropout_ratio, mode="upscale_in_train")

    def forward(self, input_ids, position_ids):
1115
        if _global_parallel_strategy in ["dp", "dp_mp"]:
1116 1117 1118 1119 1120
            auto.shard_tensor(
                input_ids,
                process_mesh=_global_process_mesh,
                shard_spec=["dp", None],
            )
1121 1122 1123 1124

        input_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

1125
        if _global_parallel_strategy in ["mp", "dp_mp"]:
1126 1127 1128 1129 1130
            auto.shard_tensor(
                self.word_embeddings.weight,
                process_mesh=_global_process_mesh,
                shard_spec=["mp", None],
            )
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

        embeddings = input_embeddings + position_embeddings
        embeddings = self.dropout1(embeddings)

        # Pre-norm
        target = self.norm(embeddings)

        # The following is the attention part
        q = self.q_proj(target)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])

        k = self.k_proj(target)
        v = self.v_proj(target)

1146
        if _global_parallel_strategy in ["mp", "dp_mp"]:
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            auto.shard_tensor(
                self.q_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
            auto.shard_tensor(
                self.k_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
            auto.shard_tensor(
                self.v_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
1162 1163 1164 1165 1166 1167 1168

        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])

        # scale dot product attention
K
kangguangli 已提交
1169 1170
        product = tensor.matmul(x=q, y=k, transpose_y=True)
        product = tensor.scale(product, scale=self.head_dim**-0.5)
1171 1172 1173 1174 1175 1176 1177

        if self.attn_mask is not None:
            product = product + self.attn_mask

        weights = F.softmax(product)

        if self.dropout_ratio:
1178 1179 1180 1181 1182 1183
            weights = F.dropout(
                weights,
                self.dropout_ratio,
                training=self.training,
                mode="upscale_in_train",
            )
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

        out = tensor.matmul(weights, v)

        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])

        # project to output
        out = self.out_proj(out)

1194
        if _global_parallel_strategy in ["mp", "dp_mp"]:
1195 1196 1197 1198 1199
            auto.shard_tensor(
                self.out_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=["mp", None],
            )
1200
        else:
1201 1202 1203 1204 1205
            auto.shard_tensor(
                self.out_proj.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, None],
            )
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

        # Add residual
        residual = embeddings + self.dropout2(out)

        # Pre-norm
        out0 = self.norm(residual)

        # The following is the MLP part
        out1 = self.linear0(out0)
        out2 = F.gelu(out1, approximate=True)
        out3 = self.linear1(out2)

1218
        if _global_parallel_strategy in ["mp", "dp_mp"]:
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
            auto.shard_tensor(
                self.linear0.weight,
                process_mesh=_global_process_mesh,
                shard_spec=[None, "mp"],
            )
            auto.shard_tensor(
                self.linear1.weight,
                process_mesh=_global_process_mesh,
                shard_spec=["mp", None],
            )
1229 1230 1231 1232 1233 1234 1235

        # Add residual
        final = residual + self.dropout3(out3)
        return final


def decoder_pretrain_forward(train_program, start_program):
1236 1237 1238
    with static.program_guard(
        train_program, start_program
    ), utils.unique_name.guard():
1239 1240 1241
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
        input_ids = static.data(
            name="input_ids", shape=[batch_size, sequence_len], dtype='int64'
        )
        position_ids = static.data(
            name="position_ids", shape=[batch_size, sequence_len], dtype='int64'
        )
        decoder = DecoderLayer(
            vocab_size=32768,
            hidden_size=hidden_size,
            sequence_len=sequence_len,
            max_position_embeddings=512,
            intermediate_size=4 * hidden_size,
            num_heads=16,
            dropout_ratio=0.1,
            initializer_range=0.02,
        )
1258 1259 1260 1261 1262 1263 1264
        out = decoder(input_ids, position_ids)

    return train_program, start_program


class TestDecoderLayerPartitioner(unittest.TestCase):
    def test_decoder_dp_mp(self):
1265 1266
        global _global_parallel_strategy
        _global_parallel_strategy = "dp_mp"
1267
        global _global_process_mesh
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], dim_names=["dp", "mp"]
        )
        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(decoder_pretrain_forward)
1278 1279 1280 1281 1282

        # param should be partition
        nrank = 4
        # col parallel
        weights = [
1283 1284 1285 1286
            'linear_0.w_0',
            'linear_1.w_0',
            'linear_2.w_0',
            'linear_4.w_0',
1287 1288
        ]
        self.assertTrue(
1289 1290 1291 1292
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 1, nrank
            )
        )
1293
        weights = [
1294 1295 1296 1297
            'linear_0.b_0',
            'linear_1.b_0',
            'linear_2.b_0',
            'linear_4.b_0',
1298 1299
        ]
        self.assertTrue(
1300 1301 1302 1303
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
1304 1305 1306
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
1307 1308 1309 1310
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
1311
        weights = [
1312 1313 1314 1315 1316
            'linear_3.b_0',
            'pos_embeddings',
            'layer_norm_0.b_0',
            'layer_norm_0.w_0',
            'linear_5.b_0',
1317 1318
        ]
        self.assertTrue(
1319 1320 1321 1322
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, 1
            )
        )
1323 1324 1325 1326 1327

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            'c_embedding',
            'c_allreduce_sum',
            'lookup_table_v2',
            'elementwise_add',
            'dropout',
            'layer_norm',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'reshape2',
            'transpose2',
K
kangguangli 已提交
1349 1350
            'matmul_v2',
            "scale",
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
            'softmax',
            'dropout',
            'matmul_v2',
            'transpose2',
            'reshape2',
            'matmul_v2',
            'c_allreduce_sum',
            'elementwise_add',
            'dropout',
            'elementwise_add',
            'layer_norm',
            'c_identity',
            'matmul_v2',
            'elementwise_add',
            'gelu',
            'matmul_v2',
            'c_allreduce_sum',
            'elementwise_add',
            'dropout',
            'elementwise_add',
1371 1372 1373
        ]
        self.assertTrue(dist_ops == ref_ops)

1374
        # parameter initialization
1375 1376 1377 1378 1379 1380 1381 1382 1383
        var_need_broadcast = sorted(
            [
                'linear_3.b_0',
                'pos_embeddings',
                'layer_norm_0.b_0',
                'layer_norm_0.w_0',
                'linear_5.b_0',
            ]
        )
1384
        self.assertTrue(
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
            initialization_check(
                _global_parallel_strategy,
                dist_context,
                dist_startup_prog,
                serial_startup_prog,
                var_need_broadcast,
                _global_process_mesh,
                mp_parallel_axis=1,
                dp_parallel_axis=0,
            )
        )
1396

1397 1398
        # check var and op all have dist_attr in dist_main_program
        self.assertTrue(
1399 1400
            distributed_attr_check_for_program(dist_main_prog, dist_context)
        )
1401
        # check distribured attr
K
kangguangli 已提交
1402
        serial_op_idx = [0, 5, 9, 11, 24, 29, 32]
1403 1404 1405 1406 1407
        dist_op_idx = [
            [0, 1],
            [6, 7],
            [11, 12],
            [14, 15],
K
kangguangli 已提交
1408 1409 1410
            [28, 29],
            [34, 35],
            [38, 39],
1411
        ]
1412
        self.assertTrue(
1413 1414 1415 1416 1417 1418 1419 1420
            distributed_attr_check_for_dist_op(
                serial_main_prog,
                dist_main_prog,
                dist_context,
                serial_op_idx,
                dist_op_idx,
            )
        )
1421

1422
    def test_decoder_noparallel(self):
1423 1424
        global _global_parallel_strategy
        _global_parallel_strategy = "None"
1425
        global _global_process_mesh
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        _global_process_mesh = auto.ProcessMesh(
            mesh=[[0, 1, 2, 3], [4, 5, 6, 7]], dim_names=["x", "y"]
        )
        (
            serial_main_prog,
            serial_startup_prog,
            dist_main_prog,
            dist_startup_prog,
            dist_context,
        ) = get_programs(decoder_pretrain_forward)
1436 1437 1438 1439 1440

        # param should be partition
        nrank = 1
        # col parallel
        weights = [
1441 1442 1443 1444
            'linear_0.w_0',
            'linear_1.w_0',
            'linear_2.w_0',
            'linear_4.w_0',
1445 1446
        ]
        self.assertTrue(
1447 1448 1449 1450
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 1, nrank
            )
        )
1451
        weights = [
1452 1453 1454 1455
            'linear_0.b_0',
            'linear_1.b_0',
            'linear_2.b_0',
            'linear_4.b_0',
1456 1457
        ]
        self.assertTrue(
1458 1459 1460 1461
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
1462 1463 1464
        # row parallel
        weights = ['word_embeddings', 'linear_3.w_0', 'linear_5.w_0']
        self.assertTrue(
1465 1466 1467 1468
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, nrank
            )
        )
1469
        weights = [
1470 1471 1472 1473 1474
            'linear_3.b_0',
            'pos_embeddings',
            'layer_norm_0.b_0',
            'layer_norm_0.w_0',
            'linear_5.b_0',
1475 1476
        ]
        self.assertTrue(
1477 1478 1479 1480
            check_tensor_split(
                dist_main_prog, weights, serial_main_prog, weights, 0, 1
            )
        )
1481 1482 1483 1484 1485

        # row and col allreduce
        dist_ops = dist_main_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
            'lookup_table_v2',
            'lookup_table_v2',
            'elementwise_add',
            'dropout',
            'layer_norm',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'matmul_v2',
            'elementwise_add',
            'matmul_v2',
            'elementwise_add',
            'reshape2',
            'transpose2',
            'reshape2',
            'transpose2',
K
kangguangli 已提交
1503 1504
            'matmul_v2',
            "scale",
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
            'softmax',
            'dropout',
            'matmul_v2',
            'transpose2',
            'reshape2',
            'matmul_v2',
            'elementwise_add',
            'dropout',
            'elementwise_add',
            'layer_norm',
            'matmul_v2',
            'elementwise_add',
            'gelu',
            'matmul_v2',
            'elementwise_add',
            'dropout',
            'elementwise_add',
1522 1523 1524 1525 1526
        ]
        self.assertTrue(dist_ops == ref_ops)
        dist_ops = dist_startup_prog.global_block().ops
        dist_ops = [op.type for op in dist_ops]
        ref_ops = [
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
            'gaussian_random',
            'gaussian_random',
            'gaussian_random',
            'fill_constant',
            'gaussian_random',
            'fill_constant',
            'gaussian_random',
            'fill_constant',
            'gaussian_random',
            'fill_constant',
            'gaussian_random',
            'fill_constant',
            'gaussian_random',
            'fill_constant',
            'fill_constant',
            'fill_constant',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
            'c_broadcast',
1575 1576 1577 1578 1579 1580
        ]
        self.assertTrue(dist_ops == ref_ops)


if __name__ == "__main__":
    unittest.main()