jit.py 55.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22
import inspect
23 24

import six
25
import paddle
26
from paddle.fluid import core
27 28
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
29
from paddle.fluid.layers.utils import flatten, pack_sequence_as
30
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
31
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
32
from paddle.fluid.dygraph.dygraph_to_static.convert_call_func import ConversionOptions, CONVERSION_OPTIONS
33
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
34
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticFunction, unwrap_decorators
35
from paddle.fluid.dygraph.io import TranslatedLayer, INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
36 37
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
38
from paddle.fluid.framework import Block, ParamBase, Program, Variable, Parameter
39 40
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
41
from paddle.fluid.wrapped_decorator import wrap_decorator
42

43 44
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
45
    'set_verbosity', 'save', 'load', 'not_to_static'
46
]
47 48 49 50 51 52 53 54 55 56


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


57
def _extract_vars(inputs, result_list, err_tag='inputs'):
58
    if isinstance(inputs, Variable):
59
        result_list.append(inputs)
60
    elif isinstance(inputs, (list, tuple)):
61
        for var in inputs:
62
            _extract_vars(var, result_list, err_tag)
63 64
    else:
        raise TypeError(
65 66
            "The type of 'each element of {}' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(err_tag, type(inputs)))
67 68


69
def extract_vars(inputs, err_tag='inputs'):
70
    result_list = []
71
    _extract_vars(inputs, result_list, err_tag)
72 73 74
    return result_list


75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
124 125
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
126
        if in_dygraph_mode() or not program_translator.enable_to_static:
127
            logging_utils.warn(
128
                "The decorator 'dygraph_to_static_func' doesn't work in "
129
                "dygraph mode or set ProgramTranslator.enable to False. "
130 131 132 133
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
134 135 136 137

    return __impl__


138
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
139

140

141 142 143 144 145 146
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
147
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
148 149 150 151 152 153 154 155 156 157 158 159 160 161
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
162 163 164
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
165 166 167 168
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
169

170
    Args:
171
        function (callable): callable imperative function.
172
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
173
            information of each input Tensor.
174

175
    Returns:
176
        Tensor(s): containing the numerical result.
177

178 179
    Examples:
        .. code-block:: python
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
195

196
    """
197

198 199
    def decorated(python_func):
        """
200
        Decorates a python function into a StaticFunction object.
201 202 203
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
204

205 206 207
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
208
            decorated_obj=StaticFunction(
209 210 211
                function=python_func, input_spec=input_spec))

        return static_layer
212

213 214
    # for usage: `declarative(foo, ...)`
    if function is not None:
215
        if isinstance(function, Layer):
216
            if isinstance(function.forward, StaticFunction):
217
                class_name = function.__class__.__name__
218
                logging_utils.warn(
219 220 221 222 223 224
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
225

226 227
    # for usage: `@declarative`
    return decorated
228 229


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
    setattr(func, CONVERSION_OPTIONS, options)
    return func


270
class _SaveLoadConfig(object):
271 272 273 274 275
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
276 277
        # used for `paddle.load`
        self._keep_name_table = False
278 279 280 281

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

282 283
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
284 285 286 287 288 289 290 291 292 293 294 295
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
296 297
        if spec is None:
            return
298 299
        if not isinstance(spec, list):
            raise TypeError(
300
                "The config `output_spec` should be 'list', but received input type is %s."
301 302 303 304
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
305
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
306 307 308 309 310 311 312 313 314
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
315 316
        if filename is None:
            return
317 318
        if not isinstance(filename, six.string_types):
            raise TypeError(
319
                "The config `model_filename` should be str, but received input's type is %s."
320 321
                % type(filename))
        if len(filename) == 0:
322
            raise ValueError("The config `model_filename` is empty string.")
323 324 325 326 327 328 329 330
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
331 332
        if filename is None:
            return
333 334
        if not isinstance(filename, six.string_types):
            raise TypeError(
335
                "The config `params_filename` should be str, but received input's type is %s."
336 337
                % type(filename))
        if len(filename) == 0:
338
            raise ValueError("The config `params_filename` is empty string.")
339 340
        self._params_filename = filename

341 342 343 344 345 346
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
347 348
        if value is None:
            return
349 350
        if not isinstance(value, bool):
            raise TypeError(
351
                "The config `keep_name_table` should be bool value, but received input's type is %s."
352 353 354
                % type(value))
        self._keep_name_table = value

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
def _parse_save_configs(configs):
    supported_configs = ['output_spec']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
                % (key))

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


391 392 393 394 395 396 397 398 399 400
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
401 402 403
    input_var_names = [
        var.name for var in flatten(inputs) if isinstance(var, Variable)
    ]
404 405
    if input_spec is None:
        # no prune
406 407 408 409 410 411 412 413 414
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
            spec for spec in input_spec
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
415 416
        # no prune
        result_list = input_var_names
417
        # if input spec name not in input_var_names, only raise warning
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
448
    for var in flatten(outputs):
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
        result_list = output_vars_dict.values()
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
        result_list = output_vars_dict.values()
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        raise ValueError("The ``path`` (%s) to load model not exists." % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
510

511
    return model_path, config
512 513


514
@switch_to_static_graph
515
def save(layer, path, input_spec=None, **configs):
516
    """
517
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
518 519
    format model, which can be used for inference or fine-tuning after loading.

520
    It will save the translated program and all related persistable
521
    variables of input Layer to given ``path`` .
522 523

    ``path`` is the prefix of saved objects, and the saved translated program file
524
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
525
    and here also saved some additional variable description information to a file,
526
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
527 528

    The saved model can be loaded by follow APIs:
529 530
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
531 532
      - Other C++ inference APIs

533 534 535 536
    .. note::
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to 
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

537
    Args:
538
        layer (Layer|function): The Layer or function to be saved.
539
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
540 541 542
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
543
            the original Layer's forward method would be the inputs of the saved model. Default None.
544 545
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
546 547 548
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
549 550 551
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
552

553 554 555 556 557 558
    Returns:
        None

    Examples:
        .. code-block:: python

559
            # example 1: save layer
560
            import numpy as np
561 562 563
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
564

565 566 567
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
568

569 570 571 572 573 574 575
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
576

577 578 579 580
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
581

582 583
                def __len__(self):
                    return self.num_samples
584

585 586
            class LinearNet(nn.Layer):
                def __init__(self):
587
                    super(LinearNet, self).__init__()
588
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
589

590
                @paddle.jit.to_static
591 592 593
                def forward(self, x):
                    return self._linear(x)

594 595 596 597 598 599 600 601 602 603 604 605
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
606

607 608 609 610
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
611

612 613 614 615 616 617 618
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
619

620 621
            # train
            train(layer, loader, loss_fn, adam)
622

623
            # save
624 625
            path = "example_model/linear"
            paddle.jit.save(layer, path)
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
                
            save_function()
648 649
    """

650
    # 1. input build & check
651
    prog_translator = ProgramTranslator()
652
    if not prog_translator.enable_to_static:
653
        raise RuntimeError(
654
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
655
        )
656 657 658

    if not (isinstance(layer, Layer) or inspect.isfunction(layer) or isinstance(
            layer, StaticFunction)):
659
        raise TypeError(
660
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
661
            % type(layer))
662 663 664 665
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
666

667 668
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
669
    # function_spec, so here we save DataParallel._layers instead
670 671 672 673 674 675 676
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

677 678 679 680 681 682 683 684 685 686 687
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
            "file_prefix is empty string.")

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
688

689 690
    # avoid change user given input_spec
    inner_input_spec = None
691
    if input_spec is not None:
692 693 694 695 696 697 698 699 700
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
                if isinstance(static_func,
                              StaticFunction) and 'forward' != attr_func:
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
                        % type(input_spec))

701
        if not isinstance(input_spec, (list, tuple)):
702 703 704
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
705
        inner_input_spec = []
706
        for var in flatten(input_spec):
707 708 709 710 711 712
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
713 714
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
715

716 717
    # parse configs
    configs = _parse_save_configs(configs)
718 719
    scope = core.Scope()
    extra_var_info = dict()
720 721 722 723 724 725 726 727 728 729 730 731 732
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
    else:
        # layer is function
        functions = [layer, ]
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
                concrete_program = static_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            elif 'forward' == attr_func:
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
733
                # inner_input_spec is list[InputSpec], it should be packed with same structure
734 735 736 737 738 739 740 741 742 743 744 745 746 747
                # as original input_spec here.
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_forward = declarative(
                    inner_layer.forward, input_spec=inner_input_spec)
                concrete_program = static_forward.concrete_program
                # the input_spec has been used in declarative, which is equal to
                # @declarative with input_spec and jit.save without input_spec,
                # avoid needless warning
                inner_input_spec = None
            else:
                continue

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
                concrete_program = attr_func.concrete_program_specify_input_spec(
                    inner_input_spec)
            else:
                if inner_input_spec:
                    inner_input_spec = pack_sequence_as(input_spec,
                                                        inner_input_spec)
                static_function = declarative(
                    attr_func, input_spec=inner_input_spec)
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.
                        format(layer))

        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
            dygraph_state_dict = inner_layer.state_dict()
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
                dygraph_state_dict = attr_func._class_instance.state_dict()

        if dygraph_state_dict:
774 775 776 777 778
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
            state_names_dict = dict()
779
            for structured_name, var in six.iteritems(dygraph_state_dict):
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
                state_names_dict[var.name] = structured_name

            # 3. share parameters from Layer to scope & record var info
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                param_or_buffer_tensor = scope.var(
                    param_or_buffer.name).get_tensor()
                src_tensor = param_or_buffer.value().get_tensor()
                param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
                    extra_info_dict = dict()
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
                            param_or_buffer.name]
                    extra_info_dict[
                        'stop_gradient'] = param_or_buffer.stop_gradient
                    if isinstance(param_or_buffer, ParamBase):
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict

        # 4. build input & output of save_infernece_model
802 803 804 805 806 807 808 809 810 811 812 813
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
        input_var_names = _get_input_var_names(concrete_program.inputs,
                                               inner_input_spec)

        # NOTE(chenweihang): [ Get output variables ]
814 815
        # the rule is like [ Get input variables name ]. For output var,
        # we only support VarBase spec, and actually, we only need the
816 817 818 819 820 821 822 823 824 825
        # var name of output, and we don't recommended to use output_spec
        output_vars = _get_output_vars(concrete_program.outputs,
                                       configs.output_spec)

        # 5. save inference model
        from paddle.fluid.io import save_inference_model

        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
826
        # so we don't support set model_filename & params_filename
827
        if 'forward' == attr_func or not isinstance(layer, Layer):
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
            params_filename = file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
                program_only=configs._program_only)

    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
853 854
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
855 856
    # configure redundant information to proceed.
    #
857 858
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
859 860
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
861 862 863 864 865 866 867 868

    # "layer" can only be Layer or function or StaticFunction.

    contain_parameter = False
    for var in concrete_program.main_program.list_vars():
        contain_parameter |= isinstance(var, Parameter)

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
869 870 871 872
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
873 874 875


@dygraph_only
876
def load(path, **configs):
877 878 879
    """
    :api_attr: imperative

880 881
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
882
    then performing inference or fine-tune training.
883 884

    .. note::
885
        If you load model saved by ``paddle.static.save_inference_model`` ,
886 887
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
888
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
889 890 891 892
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
893
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
894 895
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
896 897
            DO NOT use them. Default None.
            The following options are currently supported:
898 899 900 901
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
902 903
            by default.

904 905 906 907 908

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
909
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
910 911 912 913

        .. code-block:: python

            import numpy as np
914 915 916
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
917

918 919 920
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
921

922 923
            IMAGE_SIZE = 784
            CLASS_NUM = 10
924

925 926 927 928
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
929

930 931 932 933
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
934

935 936 937 938 939
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
940
                    super(LinearNet, self).__init__()
941
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
942

943
                @paddle.jit.to_static
944 945 946
                def forward(self, x):
                    return self._linear(x)

947 948 949 950 951 952 953 954 955 956 957
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

958
            # 1. train & save model.
959

960
            # create network
961 962 963 964
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

965
            # create data loader
966 967 968 969 970 971
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
972

973 974
            # train
            train(layer, loader, loss_fn, adam)
975

976
            # save
977 978
            path = "example_model/linear"
            paddle.jit.save(layer, path)
979

980
            # 2. load model
981

982
            # load
983
            loaded_layer = paddle.jit.load(path)
984 985

            # inference
986 987 988
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
989 990

            # fine-tune
991 992 993
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
994 995


996
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
997 998 999 1000

        .. code-block:: python

            import numpy as np
1001
            import paddle
1002
            import paddle.static as static
1003 1004
            import paddle.nn as nn
            import paddle.optimizer as opt
1005
            import paddle.nn.functional as F
1006

1007 1008 1009
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1010

1011 1012 1013 1014 1015 1016 1017
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1018

1019 1020 1021 1022
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1023

1024 1025
                def __len__(self):
                    return self.num_samples
1026

1027 1028
            paddle.enable_static()

1029 1030
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1031
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1032 1033
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1034

1035
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1036 1037
            optimizer.minimize(avg_loss)

1038 1039 1040
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1041

1042 1043 1044 1045 1046
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1047
                batch_size=BATCH_SIZE,
1048 1049 1050
                shuffle=True,
                drop_last=True,
                num_workers=2)
1051 1052 1053 1054

            # 1. train and save inference model
            for data in loader():
                exe.run(
1055
                    static.default_main_program(),
1056
                    feed=data,
1057 1058 1059
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1060
            paddle.fluid.io.save_inference_model(
1061 1062 1063
                model_path, ["image"], [pred], exe)

            # 2. load model
1064 1065

            # enable dygraph mode
1066 1067 1068 1069
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1070

1071 1072 1073
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1074 1075
            pred = fc(x)

1076
            # fine-tune
1077
            fc.train()
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1095
    """
1096 1097 1098 1099
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1100
    return TranslatedLayer._construct(model_path, config)
1101 1102


1103
@dygraph_only
Z
Zeng Jinle 已提交
1104 1105 1106 1107 1108
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1109
    assert isinstance(layer, Layer)
1110 1111 1112 1113 1114 1115 1116 1117 1118

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1119
        original_outputs = layer(*inputs)
1120 1121 1122 1123
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1124
        out_vars = extract_vars(outputs, err_tag='outputs')
1125

1126
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1127
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1128 1129 1130 1131 1132
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1133
    return original_outputs, program, feed_names, fetch_names, parameters
1134 1135 1136 1137


class TracedLayer(object):
    """
1138
    :api_attr: imperative
1139

1140 1141 1142 1143 1144
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1145 1146 1147 1148

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1149 1150

    All TracedLayer objects should not be created by constructor and should
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1162
        self._params = parameters
1163 1164 1165 1166 1167

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1168
            src_tensor = p.value().get_tensor()
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1192
        This method is the only allowed method to create TracedLayer object.
1193 1194 1195 1196
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1197
            layer (paddle.nn.Layer): the layer object to be traced.
1198 1199
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1200 1201

        Returns:
1202
            tuple: A tuple of 2 items, whose the first item is the output of
1203 1204
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1205

1206
        Examples:
1207 1208
            .. code-block:: python:

1209
                import paddle
1210

1211
                class ExampleLayer(paddle.nn.Layer):
1212 1213
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1214
                        self._fc = paddle.nn.Linear(3, 10)
1215 1216 1217 1218

                    def forward(self, input):
                        return self._fc(input)

1219

1220 1221 1222 1223 1224 1225
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1226

1227 1228
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1229

1230 1231
                # save the static graph model for inference
                static_layer.save_inference_model(dirname='./saved_infer_model')
1232

1233
        """
1234 1235 1236 1237
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1238 1239
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1240 1241 1242 1243 1244 1245 1246
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1247
            build_strategy (BuildStrategy, optional): build strategy of
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1258
                import paddle
1259

1260
                class ExampleLayer(paddle.nn.Layer):
1261 1262
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1263
                        self._fc = paddle.nn.Linear(3, 10)
1264 1265 1266 1267

                    def forward(self, input):
                        return self._fc(input)

1268 1269 1270 1271
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1272

1273 1274
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1275

1276 1277
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1278

1279 1280
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1281 1282 1283

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1284 1285 1286 1287 1288 1289 1290 1291
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1310
                feed_dict[name] = x.value().get_tensor()
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1331
    def save_inference_model(self, path, feed=None, fetch=None):
1332
        """
1333 1334
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1335

1336 1337 1338
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1339
        Args:
1340
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1341
            feed (list[int], optional): the input variable indices of the saved
1342
                inference model. If None, all input variables of the
1343 1344 1345 1346 1347 1348 1349 1350
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1351
            None
1352 1353 1354 1355 1356

        Examples:
            .. code-block:: python:

                import numpy as np
1357
                import paddle
1358

1359
                class ExampleLayer(paddle.nn.Layer):
1360 1361
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
1362
                        self._fc = paddle.nn.Linear(3, 10)
1363 1364 1365 1366

                    def forward(self, input):
                        return self._fc(input)

1367 1368
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1369 1370
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1371

1372 1373
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1374

1375 1376 1377 1378
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1379
                                                    exe)
1380 1381 1382

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1383
        """
1384
        check_type(path, "path", str,
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
                "file_prefix is empty string.")

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1411
        from paddle.fluid.io import save_inference_model
1412 1413 1414 1415 1416

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1417
            return [all_vars[idx] for idx in partial_vars]
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1428 1429 1430
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1431
            save_inference_model(
1432 1433 1434 1435
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
1436 1437 1438
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename)