fleet.cc 31.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"

17 18
#include <google/protobuf/text_format.h>

19 20
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
#include "paddle/fluid/distributed/ps/table/table.h"
D
danleifeng 已提交
21 22 23 24
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
#if defined PADDLE_WITH_HETERPS && defined PADDLE_WITH_PSCORE
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#endif
T
tangwei12 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace distributed {

using framework::LoDTensor;
using framework::ProgramDesc;
using framework::VarDesc;
using framework::Variable;

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
bool FleetWrapper::is_initialized_ = false;

std::shared_ptr<paddle::distributed::PSCore> FleetWrapper::pserver_ptr_ = NULL;
39 40 41 42 43 44 45 46 47 48 49 50 51 52
std::shared_ptr<paddle::distributed::PSClient> FleetWrapper::worker_ptr_ = NULL;

int FleetWrapper::RegisterHeterCallback(HeterCallBackFunc handler) {
  VLOG(0) << "RegisterHeterCallback support later";
  return 0;
}

int32_t FleetWrapper::CopyTable(const uint64_t src_table_id,
                                const uint64_t dest_table_id) {
  VLOG(0) << "CopyTable support later";
  return 0;
}

int32_t FleetWrapper::CopyTableByFeasign(
53 54
    const uint64_t src_table_id,
    const uint64_t dest_table_id,
55 56 57 58
    const std::vector<uint64_t>& feasign_list) {
  VLOG(0) << "CopyTableByFeasign support later";
  return 0;
}
T
tangwei12 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72

void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

void FleetWrapper::LoadSparseOnServer(const std::string& path,
                                      const std::string& meta,
                                      uint32_t table_id) {
  VLOG(3) << "load sparse table " << table_id << " with " << path << " meta "
          << meta;
Z
zhaocaibei123 已提交
73
  pserver_ptr_->_server_ptr->GetTable(table_id)->Load(path, meta);
T
tangwei12 已提交
74 75
}

76 77
void FleetWrapper::InitServer(
    const std::string& dist_desc,
78 79 80
    const std::vector<std::string>& host_sign_list,
    int index,
    int trainers,
81
    const std::vector<framework::ProgramDesc>& server_sub_program) {
T
tangwei12 已提交
82 83 84 85
  if (!is_initialized_) {
    VLOG(3) << "Going to init server";
    pserver_ptr_ = std::shared_ptr<paddle::distributed::PSCore>(
        new paddle::distributed::PSCore());
86 87 88 89 90 91
    pserver_ptr_->InitServer(dist_desc,
                             &host_sign_list,
                             host_sign_list.size(),
                             index,
                             trainers,
                             server_sub_program);
T
tangwei12 已提交
92 93 94 95 96 97
    is_initialized_ = true;
  } else {
    VLOG(3) << "Server can be initialized only once";
  }
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
void FleetWrapper::InitGFlag(const std::string& gflags) {
  VLOG(3) << "Init With Gflags:" << gflags;
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char* flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
    flags_ptr[i] = (char*)(flags[i].c_str());  // NOLINT
  }
  int params_cnt = flags.size();
  char** params_ptr = &(flags_ptr[0]);
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
}
T
tangwei12 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131
void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<std::string>& host_sign_list,
                              int index) {
  if (!is_initialized_) {
    // not used, just for psclient's init
    // TODO(zhaocaibei123): remove this later
    std::map<uint64_t, std::vector<paddle::distributed::Region>>
        dense_pull_regions;

    if (worker_ptr_.get() == nullptr) {
      paddle::distributed::PSParameter ps_param;
      google::protobuf::TextFormat::ParseFromString(dist_desc, &ps_param);
      InitGFlag(ps_param.init_gflags());
      int servers = host_sign_list.size();
Z
zhaocaibei123 已提交
132
      ps_env_.SetPsServers(&host_sign_list, servers);
133
      worker_ptr_ = std::shared_ptr<paddle::distributed::PSClient>(
Z
zhaocaibei123 已提交
134 135
          paddle::distributed::PSClientFactory::Create(ps_param));
      worker_ptr_->Configure(ps_param, dense_pull_regions, ps_env_, index);
D
danleifeng 已提交
136 137 138 139 140 141 142
#if defined PADDLE_WITH_HETERPS && defined PADDLE_WITH_PSCORE
      VLOG(3) << "FleetWrapper::InitWorker InitializeGPUServer";
      auto* accessor = worker_ptr_->GetTableAccessor(0);
      auto ps_gpu_wrapper = paddle::framework::PSGPUWrapper::GetInstance();
      ps_gpu_wrapper->InitializeGPUServer(ps_param);
      ps_gpu_wrapper->SetTableAccessor(accessor);
#endif
143
    }
T
tangwei12 已提交
144
  } else {
145
    VLOG(3) << "Client can be initialized only once";
T
tangwei12 已提交
146 147 148 149 150
  }
}

void FleetWrapper::StopServer() {
  VLOG(3) << "Going to stop server";
Z
zhaocaibei123 已提交
151
  auto status = worker_ptr_->StopServer();
T
tangwei12 已提交
152 153 154 155 156
  status.wait();
}

void FleetWrapper::FinalizeWorker() {
  VLOG(3) << "Going to finalize worker";
Z
zhaocaibei123 已提交
157
  worker_ptr_->FinalizeWorker();
T
tangwei12 已提交
158 159 160 161 162 163 164 165 166 167
}

void FleetWrapper::BarrierWithTable(uint32_t barrier_type) {
  VLOG(3) << "Going to Barrier worker";
  auto* communicator = Communicator::GetInstance();
  communicator->BarrierWithTable(barrier_type);
}

uint64_t FleetWrapper::RunServer(const std::string& ip, uint32_t port) {
  VLOG(3) << "Going to run server with ip " << ip << " port " << port;
Z
zhaocaibei123 已提交
168
  auto ret = pserver_ptr_->RunServer(ip, port);
T
tangwei12 已提交
169 170 171 172 173
  return ret;
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
  VLOG(3) << "Going to get client info";
Z
zhaocaibei123 已提交
174
  std::vector<uint64_t> res = ps_env_.GetClientInfo();
175 176 177
  for (auto rr : res) {
    VLOG(2) << "FleetWrapper::GetClientInfo " << rr;
  }
Z
zhaocaibei123 已提交
178
  return res;
T
tangwei12 已提交
179 180
}

181 182
int FleetWrapper::SetClients(std::vector<uint64_t>& host_sign_list) {
  int node = host_sign_list.size();
Z
zhaocaibei123 已提交
183
  return ps_env_.SetPsClients(host_sign_list.data(), node);
184 185
}

T
tangwei12 已提交
186
void FleetWrapper::CreateClient2ClientConnection() {
Z
zhaocaibei123 已提交
187
  VLOG(1) << "Going to create client2client connection";
Z
zhaocaibei123 已提交
188 189 190
  worker_ptr_->CreateClient2ClientConnection(client2client_request_timeout_ms_,
                                             client2client_connect_timeout_ms_,
                                             client2client_max_retry_);
T
tangwei12 已提交
191 192
}

193
std::future<int32_t> FleetWrapper::PullSparseVarsAsync(
194 195 196 197 198 199
    const Scope& scope,
    const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values,
    int fea_value_dim) {
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }

  bool training = true;
229 230
  return pserver_ptr_->_worker_ptr->PullSparse(pull_result_ptr.data(),
                                               table_id,
Z
zhaocaibei123 已提交
231
                                               fea_keys->data(),
232 233
                                               fea_keys->size(),
                                               training);
234 235
}

T
tangwei12 已提交
236
void FleetWrapper::PullSparseVarsSync(
237 238 239 240 241 242
    const Scope& scope,
    const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values,
    int fea_value_dim,
T
tangwei12 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
    const std::vector<std::string>& var_emb_names) {
  std::vector<std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
282
  bool training = true;
283 284 285 286 287
  auto status = pserver_ptr_->_worker_ptr->PullSparse(pull_result_ptr.data(),
                                                      table_id,
                                                      fea_keys->data(),
                                                      fea_keys->size(),
                                                      training);
T
tangwei12 已提交
288 289 290 291 292 293 294 295 296 297 298 299
  pull_sparse_status.push_back(std::move(status));
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(sleep_seconds_before_fail_exit_);
      exit(-1);
    }
  }
}

300 301 302
// is_training is true means training, false means inference, the behavior is
// different on pserver

303 304
void FleetWrapper::PullSparseToTensorSync(const uint64_t table_id,
                                          int fea_dim,
T
tangwei12 已提交
305 306
                                          uint64_t padding_id,
                                          platform::Place place,
307
                                          bool is_training,
T
tangwei12 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
                                          std::vector<const LoDTensor*>* inputs,
                                          std::vector<LoDTensor*>* outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float*> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor* output = nullptr;
  float* output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
336 337
        memcpy(output_data + output_len,
               init_value.data(),
T
tangwei12 已提交
338 339 340 341 342 343 344
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
Z
zhaocaibei123 已提交
345

346 347 348 349 350
  auto status = worker_ptr_->PullSparse(pull_result_ptr.data(),
                                        table_id,
                                        fea_keys.data(),
                                        fea_keys.size(),
                                        is_training);
T
tangwei12 已提交
351 352 353 354 355 356 357 358 359
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void FleetWrapper::PullDenseVarsAsync(
360 361
    const Scope& scope,
    const uint64_t tid,
T
tangwei12 已提交
362
    const std::vector<std::string>& var_names,
363 364
    std::vector<std::future<int32_t>>* pull_dense_status,
    bool in_cpu) {
Z
zhaocaibei123 已提交
365
  auto& regions = regions_[tid];
T
tangwei12 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378
  regions.clear();
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    std::string varname = var_names[i];
    if (!in_cpu) {
      varname = var_names[i] + "pin";
    }
    Variable* var = scope.FindVar(varname);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::distributed::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
Z
zhaocaibei123 已提交
379 380

  auto status = worker_ptr_->PullDense(regions.data(), regions.size(), tid);
T
tangwei12 已提交
381 382 383 384
  pull_dense_status->push_back(std::move(status));
}

void FleetWrapper::PullDenseVarsSync(
385 386
    const Scope& scope,
    const uint64_t tid,
T
tangwei12 已提交
387
    const std::vector<std::string>& var_names) {
Z
zhaocaibei123 已提交
388
  auto& regions = regions_[tid];
T
tangwei12 已提交
389 390 391 392 393
  regions.clear();
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
394 395 396 397 398
    if (!platform::is_gpu_place(tensor->place())) {
      float* w = tensor->data<float>();
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
T
tangwei12 已提交
399
  }
Z
zhaocaibei123 已提交
400
  auto status = worker_ptr_->PullDense(regions.data(), regions.size(), tid);
T
tangwei12 已提交
401 402 403 404
  status.wait();
}

void FleetWrapper::PushDenseParamSync(
405 406
    const Scope& scope,
    const uint64_t table_id,
T
tangwei12 已提交
407 408 409 410 411 412 413
    const std::vector<std::string>& var_names) {
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
414 415 416 417 418
    if (!platform::is_gpu_place(tensor->place())) {
      float* g = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
T
tangwei12 已提交
419
  }
420
  auto push_status =
Z
zhaocaibei123 已提交
421
      worker_ptr_->PushDenseParam(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
422 423 424 425 426 427
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
}

void FleetWrapper::PushDenseVarsSync(
428 429
    Scope* scope,
    const uint64_t table_id,
T
tangwei12 已提交
430 431 432
    const std::vector<std::string>& var_names) {}

void FleetWrapper::PushDenseVarsAsync(
433 434
    const Scope& scope,
    const uint64_t table_id,
T
tangwei12 已提交
435
    const std::vector<std::string>& var_names,
436 437
    std::vector<std::future<int32_t>>* push_sparse_status,
    float scale_datanorm,
T
tangwei12 已提交
438
    int batch_size) {
Z
zhaocaibei123 已提交
439 440 441 442 443 444
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
445
    int count = tensor->numel();
Z
zhaocaibei123 已提交
446
    float* g = tensor->mutable_data<float>(place);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
    // TODO(zhaocaibei123): how to get batch_size in op?
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }

Z
zhaocaibei123 已提交
463 464 465 466 467 468 469
    paddle::distributed::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
    VLOG(3) << "FleetWrapper::PushDenseVarsAsync Var " << t << " talbe_id "
            << table_id << " Temp_data[0] " << g[0] << " Temp_data[-1] "
            << g[tensor->numel() - 1];
  }

Z
zhaocaibei123 已提交
470 471
  auto push_status =
      worker_ptr_->PushDense(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
472 473 474
}

void FleetWrapper::PushSparseVarsAsync(
475 476
    const Scope& scope,
    const uint64_t table_id,
T
tangwei12 已提交
477 478 479 480 481 482 483
    const std::string& grad_varname,
    std::vector<std::future<int32_t>>* push_sparse_status) {
  std::vector<std::string> varnames;
  varnames.push_back(grad_varname);

  auto* communicator = Communicator::GetInstance();
  PADDLE_ENFORCE_EQ(
484 485
      communicator->Check(table_id),
      true,
T
tangwei12 已提交
486 487 488 489 490 491
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
  communicator->Send(varnames, scope);
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
492 493 494 495
    const Scope& scope,
    const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys,
    const std::vector<float>& fea_labels,
T
tangwei12 已提交
496
    const std::vector<std::string>& sparse_key_names,
497 498
    const std::vector<std::string>& sparse_grad_names,
    const int emb_dim,
T
tangwei12 已提交
499
    std::vector<std::vector<float>>* push_values,
500 501 502 503 504 505
    std::vector<std::future<int32_t>>* push_sparse_status,
    const int batch_size,
    const bool use_cvm,
    const bool dump_slot,
    std::vector<uint64_t>* sparse_push_keys,
    const bool no_cvm) {
T
tangwei12 已提交
506 507 508 509 510
  // not support
  return;
}

void FleetWrapper::PushSparseFromTensorWithLabelAsync(
511 512 513 514 515 516 517 518
    const Scope& scope,
    const uint64_t table_id,
    int fea_dim,
    uint64_t padding_id,
    bool scale_sparse,
    const std::string& accesor,
    const std::string& click_name,
    platform::Place place,
T
tangwei12 已提交
519 520 521 522 523 524 525
    const std::vector<std::string>& input_names,
    std::vector<const LoDTensor*>* inputs,
    std::vector<const LoDTensor*>* outputs) {
  // not support
  return;
}

Z
zhaocaibei123 已提交
526
void FleetWrapper::PushSparseFromTensorAsync(
527 528 529 530 531 532 533 534 535
    const uint64_t table_id,
    int fea_dim,
    uint64_t padding_id,
    platform::Place place,
    std::vector<const LoDTensor*>* inputs,
    const LoDTensor* shows,
    const LoDTensor* clks,
    std::vector<LoDTensor*>* outputs,
    bool use_cvm_op) {
Z
zhaocaibei123 已提交
536
  int batch_size = -1;
Z
zhaocaibei123 已提交
537
  bool batch_size_consist = true;
Z
zhaocaibei123 已提交
538
  for (auto* input : *inputs) {
D
danleifeng 已提交
539
    size_t cur_batch_size =
Z
zhaocaibei123 已提交
540 541
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
D
danleifeng 已提交
542 543
      batch_size = int(cur_batch_size);
    } else if (batch_size != int(cur_batch_size)) {
Z
zhaocaibei123 已提交
544 545 546
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
Z
zhaocaibei123 已提交
547 548 549 550
    }
  }
  CHECK(batch_size > 0);  // NOLINT

D
danleifeng 已提交
551
  size_t show_size =
Z
zhaocaibei123 已提交
552
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
D
danleifeng 已提交
553 554
  CHECK(show_size == size_t(batch_size) || show_size == 1);
  size_t clk_size =
Z
zhaocaibei123 已提交
555
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
D
danleifeng 已提交
556
  CHECK(clk_size == size_t(batch_size) || clk_size == 1);
Z
zhaocaibei123 已提交
557

558
  CHECK(outputs->size() == inputs->size());
Z
zhaocaibei123 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim;

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
  const int64_t* show_tensor = shows->data<int64_t>();
  const int64_t* clk_tensor = clks->data<int64_t>();

  for (size_t index = 0; index < inputs->size(); ++index) {
575 576 577 578 579 580 581 582
    framework::LoDTensor* g_tensor = outputs->at(index);
    float* g = g_tensor->data<float>();
    // no cvm
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
583 584 585 586 587
      if (use_cvm_op) {
        g_mat.rightCols(fea_dim - 2) *= batch_size;
      } else {
        g_mat.rightCols(fea_dim) *= batch_size;
      }
588 589
    }

Z
zhaocaibei123 已提交
590 591 592
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
593
    output_len = 0;
Z
zhaocaibei123 已提交
594 595

    if (tensor->lod().size() > 0) {
Z
zhangchunle 已提交
596
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
597
        for (size_t j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
Z
zhaocaibei123 已提交
598 599 600 601 602 603
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
604 605 606 607 608 609 610 611 612 613 614
          if (use_cvm_op) {
            push_values.emplace_back(fea_dim + 1);
            push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
            float* data = push_values.back().data() + 1;
            memcpy(data, g + output_len, sizeof(float) * fea_dim);
          } else {
            push_values.emplace_back(fea_dim + 3);
            // slot show clk grad... consistent with CtrCommonPushValue defined
            // in
            // ctr_accessor.h
            push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
D
danleifeng 已提交
615 616 617 618
            push_values.back()[1] =
                (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
            push_values.back()[2] =
                (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
619 620 621 622 623 624 625
            float* data = push_values.back().data() + 3;
            memcpy(data, g + output_len, sizeof(float) * fea_dim);
          }
          ++input_idx;
        }
      }
    } else {
Z
zhangchunle 已提交
626
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
627 628 629 630 631 632 633 634 635 636 637
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
        if (use_cvm_op) {
          push_values.emplace_back(fea_dim + 1);
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
          float* data = push_values.back().data() + 1;
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
        } else {
Z
zhaocaibei123 已提交
638 639 640 641
          push_values.emplace_back(fea_dim + 3);
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
          push_values.back()[0] = 2;  // TODO(zhaocaibei123): slot
D
danleifeng 已提交
642 643 644 645
          push_values.back()[1] =
              (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
          push_values.back()[2] =
              (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
Z
zhaocaibei123 已提交
646
          float* data = push_values.back().data() + 3;
647
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
Z
zhaocaibei123 已提交
648 649 650 651
        }
        ++input_idx;
      }
    }
Z
zhangchunle 已提交
652
    CHECK(static_cast<int64_t>(output_len) == g_tensor->numel());
Z
zhaocaibei123 已提交
653 654 655 656 657 658 659 660
  }

  std::vector<float*> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

661 662
  auto status = worker_ptr_->PushSparse(table_id,
                                        push_keys.data(),
Z
zhaocaibei123 已提交
663 664
                                        (const float**)push_g_vec.data(),
                                        push_keys.size());
Z
zhaocaibei123 已提交
665 666 667
}

void FleetWrapper::LoadModel(const std::string& path, const int mode) {
Z
zhaocaibei123 已提交
668
  auto ret = worker_ptr_->Load(path, std::to_string(mode));
T
tangwei12 已提交
669 670 671 672 673 674 675
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
  }
}

void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
676 677
                                     const std::string& path,
                                     const int mode) {
Z
zhaocaibei123 已提交
678
  auto ret = worker_ptr_->Load(table_id, path, std::to_string(mode));
T
tangwei12 已提交
679 680 681 682 683 684 685 686
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
}

void FleetWrapper::SaveModel(const std::string& path, const int mode) {
Z
zhaocaibei123 已提交
687
  auto ret = worker_ptr_->Save(path, std::to_string(mode));
T
tangwei12 已提交
688 689 690 691 692 693 694 695
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
  }
}

void FleetWrapper::SaveModelOneTable(const uint64_t table_id,
696 697
                                     const std::string& path,
                                     const int mode) {
Z
zhaocaibei123 已提交
698
  auto ret = worker_ptr_->Save(table_id, path, std::to_string(mode));
T
tangwei12 已提交
699 700 701 702 703 704 705
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

706 707
void FleetWrapper::RecvAndSaveTable(const uint64_t table_id,
                                    const std::string& path) {
Z
zhaocaibei123 已提交
708
  auto ret = worker_ptr_->RecvAndSaveTable(table_id, path);
709 710 711 712 713 714
  if (ret != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

T
tangwei12 已提交
715
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
Z
zhaocaibei123 已提交
716
  auto ret = worker_ptr_->PrintTableStat(table_id);
T
tangwei12 已提交
717 718 719 720 721 722 723
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
}

724
void FleetWrapper::ShrinkSparseTable(int table_id, int threshold) {
Z
zhaocaibei123 已提交
725
  auto ret = worker_ptr_->Shrink(table_id, std::to_string(threshold));
T
tangwei12 已提交
726
  ret.wait();
727 728 729 730
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "shrink sparse table stat failed";
  }
T
tangwei12 已提交
731 732 733
}

void FleetWrapper::ClearModel() {
Z
zhaocaibei123 已提交
734
  auto ret = pserver_ptr_->_worker_ptr->Clear();
T
tangwei12 已提交
735 736 737 738
  ret.wait();
}

void FleetWrapper::ClearOneTable(const uint64_t table_id) {
Z
zhaocaibei123 已提交
739
  auto ret = pserver_ptr_->_worker_ptr->Clear(table_id);
T
tangwei12 已提交
740 741 742
  ret.wait();
}

743 744
void FleetWrapper::ShrinkDenseTable(int table_id,
                                    Scope* scope,
T
tangwei12 已提交
745
                                    std::vector<std::string> var_list,
746 747
                                    float decay,
                                    int emb_dim) {
T
tangwei12 已提交
748 749 750 751 752
  std::vector<paddle::distributed::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
753
      VLOG(3) << "prepare shrink dense batch_sum";
T
tangwei12 已提交
754 755 756 757 758
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
759 760
      size_name.replace(
          size_name.find("batch_sum"), size_name.length(), "batch_size");
T
tangwei12 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
Z
zhaocaibei123 已提交
780
  auto push_status = pserver_ptr_->_worker_ptr->PushDenseParam(
T
tangwei12 已提交
781 782 783 784 785 786 787 788 789 790 791 792
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    // PADDLE_THORW(platform::errors::Fatal(
    //    "push shrink dense param failed, status is [%d].", status));
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
}

void FleetWrapper::ClientFlush() {
793 794 795 796
  if (worker_ptr_.get() == nullptr) {
    VLOG(0) << "worker_ptr null, do nothing";
    return;
  }
Z
zhaocaibei123 已提交
797
  auto ret = worker_ptr_->Flush();
T
tangwei12 已提交
798
  ret.wait();
799 800 801 802
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "Client Flush failed";
  }
T
tangwei12 已提交
803 804 805 806
}

int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
807 808
  if (worker_ptr_.get() == nullptr) {
    VLOG(0) << "FleetWrapper::Client is null";
Z
zhaocaibei123 已提交
809 810
    return -1;
  } else {
Z
zhaocaibei123 已提交
811
    return worker_ptr_->RegisteClient2ClientMsgHandler(msg_type, handler);
Z
zhaocaibei123 已提交
812
  }
T
tangwei12 已提交
813 814 815 816
}

std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
Z
zhaocaibei123 已提交
817
  return worker_ptr_->SendClient2ClientMsg(msg_type, to_client_id, msg);
T
tangwei12 已提交
818 819
}

Z
zhaocaibei123 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833
double FleetWrapper::GetCacheThreshold(int table_id) {
  double cache_threshold = 0.0;
  auto ret = worker_ptr_->Flush();
  ret.wait();
  ret = worker_ptr_->GetCacheThreshold(table_id, cache_threshold);
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return cache_threshold;
}

834 835 836 837 838 839
void FleetWrapper::CacheShuffle(int table_id,
                                const std::string& path,
                                const int mode,
                                const double cache_threshold) {
  auto ret = worker_ptr_->CacheShuffle(
      table_id, path, std::to_string(mode), std::to_string(cache_threshold));
Z
zhaocaibei123 已提交
840 841 842 843 844 845 846 847 848
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
}

849 850
int32_t FleetWrapper::SaveCache(int table_id,
                                const std::string& path,
Z
zhaocaibei123 已提交
851 852 853 854 855 856 857 858 859 860 861 862
                                const int mode) {
  auto ret = worker_ptr_->SaveCache(table_id, path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
}

Z
zhaocaibei123 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
void FleetWrapper::Revert() {
  auto ret = worker_ptr_->Revert();
  ret.wait();
  if (ret.get() == -1) {
    LOG(ERROR) << "table revert failed";
    exit(-1);
  }
}

void FleetWrapper::CheckSavePrePatchDone() {
  auto ret = worker_ptr_->CheckSavePrePatchDone();
  ret.wait();
  if (ret.get() == -1) {
    LOG(ERROR) << "table revert failed";
    exit(-1);
  }
}

T
tangwei12 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;

    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

898 899 900
size_t FleetWrapper::GetAbsoluteSum(size_t start,
                                    size_t end,
                                    size_t level,
T
tangwei12 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
                                    const framework::LoD& lod) {
  if (level >= lod.size() - 1) {
    return end - start;
  }
  size_t ret = 0;
  for (size_t i = start; i < end - 1; ++i) {
    size_t pos1 = lod[level][i];
    size_t pos2 = lod[level][i + 1];
    ret += GetAbsoluteSum(pos1, pos2, level + 1, lod);
  }
  return ret;
}

}  // end namespace distributed
}  // end namespace paddle