test_image_classification_layer.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Q
Qiao Longfei 已提交
15 16
import unittest

17
import paddle
18 19 20
import paddle.fluid as fluid
import paddle.fluid.nets as nets
from paddle.fluid.framework import Program
Q
Qiao Longfei 已提交
21 22


23
def conv_block(input, num_filter, groups, dropouts):
24 25 26 27 28 29 30 31 32 33 34
    return nets.img_conv_group(
        input=input,
        pool_size=2,
        pool_stride=2,
        conv_num_filter=[num_filter] * groups,
        conv_filter_size=3,
        conv_act='relu',
        conv_with_batchnorm=True,
        conv_batchnorm_drop_rate=dropouts,
        pool_type='max',
    )
Q
Qiao Longfei 已提交
35 36 37 38


class TestLayer(unittest.TestCase):
    def test_batch_norm_layer(self):
39 40
        main_program = Program()
        startup_program = Program()
41
        with fluid.program_guard(main_program, startup_program):
42 43 44
            images = fluid.layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
45 46 47
            hidden1 = fluid.layers.batch_norm(input=images)
            hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
            fluid.layers.batch_norm(input=hidden2)
Q
Qiao Longfei 已提交
48

49
        print(str(main_program))
Q
Qiao Longfei 已提交
50 51

    def test_dropout_layer(self):
52 53
        main_program = Program()
        startup_program = Program()
54
        with fluid.program_guard(main_program, startup_program):
55 56 57
            images = fluid.layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
58
            fluid.layers.dropout(x=images, dropout_prob=0.5)
Q
Qiao Longfei 已提交
59

60
        print(str(main_program))
Q
Qiao Longfei 已提交
61 62

    def test_img_conv_group(self):
63 64
        main_program = Program()
        startup_program = Program()
Q
Qiao Longfei 已提交
65

66
        with fluid.program_guard(main_program, startup_program):
67 68 69
            images = fluid.layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
70 71
            conv1 = conv_block(images, 64, 2, [0.3, 0])
            conv_block(conv1, 256, 3, [0.4, 0.4, 0])
Q
Qiao Longfei 已提交
72

73
        print(str(main_program))
Q
Qiao Longfei 已提交
74

Q
Qiao Longfei 已提交
75
    def test_elementwise_add_with_act(self):
76 77
        main_program = Program()
        startup_program = Program()
78
        with fluid.program_guard(main_program, startup_program):
79 80 81 82 83 84
            image1 = fluid.layers.data(
                name='pixel1', shape=[3, 48, 48], dtype='float32'
            )
            image2 = fluid.layers.data(
                name='pixel2', shape=[3, 48, 48], dtype='float32'
            )
85
            paddle.nn.functional.relu(paddle.add(x=image1, y=image2))
86
        print(main_program)
Q
Qiao Longfei 已提交
87

Q
Qiao Longfei 已提交
88 89 90

if __name__ == '__main__':
    unittest.main()