elementwise_base.h 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/platform/transform.h"
18 19 20
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
21 22
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/elementwise_utils.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
24

25
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
26
#include "paddle/fluid/platform/function_traits.h"
27
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
28
#include "paddle/phi/kernels/funcs/aligned_vector.h"
29
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
30

31
#define HOSTDEVICE __host__ __device__
32
namespace kps = phi::kps;
33 34 35

#endif

36
namespace phi {
37

38 39 40 41 42
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
   for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
43
    typename std::conditional_t<Num == 1, T, phi::Array<T, Num>>;
44 45

namespace funcs {
46
using DDim = phi::DDim;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

template <typename T, typename DeviceContext>
class RowwiseTransformIterator;

template <typename T, typename DeviceContext>
class MidWiseTransformIterator;

// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
template <typename T>
class RowwiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, CPUContext> &operator++() {
    ++i_;
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
    return *this;
  }

  RowwiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

  bool operator==(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int i_;
  int64_t n_;
};

template <typename T>
class MidWiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  MidWiseTransformIterator(const T *ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, CPUContext> &operator++() {
    ++j_;
    if (UNLIKELY(j_ == post_)) {
      ++i_;
      j_ = 0;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }
    return *this;
  }

  MidWiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

  bool operator==(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int64_t i_;
  int64_t j_;
  int64_t n_;
  int64_t post_;
};

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
157 158
class RowwiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
159 160
                                      const T *> {
 public:
161
  typedef thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                                   const T *>
      super_t;
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
      : super_t(x), begin_(x), n_(n) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
177 178
class MidWiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
179 180
                                      const T *> {
 public:
181
  typedef thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                                   const T *>
      super_t;
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
      : super_t(x), begin_(x), n_(n), post_(post) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

template <typename Functor,
          typename T,
          typename DeviceContext,
          typename OutType = T>
class TransformFunctor {
 public:
  TransformFunctor(const DenseTensor &x,
                   const DenseTensor &y,
                   DenseTensor *z,
                   const DeviceContext &ctx,
                   Functor func,
                   const bool is_xsize_larger = true)
      : x_(x.data<T>()),
        y_(y.data<T>()),
212
        z_(ctx.template Alloc<OutType>(z)),
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        nx_(x.numel()),
        ctx_(ctx),
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y.numel();
    }
  }

  inline void Run() const {
    paddle::platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
  }

  inline void RunRowWise(int n, int pre) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n),
            z_,
            func_);
    }
  }

  inline void RunMidWise(int n, int pre, int post) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post),
            z_,
            func_);
    }
  }

 private:
  const T *x_;
  const T *y_;
  OutType *z_;
  int64_t nx_;
  const DeviceContext &ctx_;
  Functor func_;
  bool is_xsize_larger_;
};

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const DenseTensor &x,
                               const DenseTensor &y,
                               DenseTensor *z,
                               int *x_dims_array,
                               int *y_dims_array,
                               int *out_dims_array,
                               int max_dim,
                               const CPUContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  PADDLE_ENFORCE_NOT_NULL(
      x_data, errors::InvalidArgument("The input X should not be empty."));
  PADDLE_ENFORCE_NOT_NULL(
      y_data, errors::InvalidArgument("The input Y should not be empty."));
  OutType *out_data = ctx.Alloc<OutType>(z);

  const int out_size = std::accumulate(
      out_dims_array, out_dims_array + max_dim, 1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
308 309 310
  }
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
template <typename Functor, typename T, typename OutType = T>
void CommonElementwiseBroadcastForward(const CPUContext &dev_ctx,
                                       const DenseTensor &x,
                                       const DenseTensor &y,
                                       DenseTensor *z,
                                       const DDim &x_dims,
                                       const DDim &y_dims,
                                       Functor func,
                                       int axis,
                                       const bool is_xsize_larger = true) {
  int max_dim = (std::max)(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      phi::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    phi::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims,
                         y_dims,
                         x_dims_array.data(),
                         y_dims_array.data(),
                         out_dims_array.data(),
                         max_dim,
                         axis);

  CommonForwardBroadcastCPU<Functor, T, OutType>(x,
                                                 y,
                                                 z,
                                                 x_dims_array.data(),
                                                 y_dims_array.data(),
                                                 out_dims_array.data(),
                                                 max_dim,
                                                 dev_ctx,
                                                 func,
                                                 is_xsize_larger);
}

// It is a common CPU implementation to compute binary calculation with the
// support of broadcast. Note:
// 1. CPU implementation cannot support the case when x needs broadcast, thus
//    this function need to be called with XxxFunctor and XxxInverseFunctor,
//    like AddFunctor and InverseAddFunctor.
// 2. The corresponding GPU implementation supports all the broadcast cases,
//    thus there is no need to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const CPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  dev_ctx.Alloc<OutType>(z);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, CPUContext, OutType> functor(
      x, y, z, dev_ctx, func, is_xsize_larger);
  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    GetMidDims(x_dims,
               y_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    GetMidDims(y_dims,
               x_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, T, OutType>(
        dev_ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
    return;
  }

  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
441 442 443
  }
}

444
// for broadcast backwards
445 446
static inline std::vector<int> GetReduceDim(const DDim &in,
                                            const DDim &out,
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                                            int axis) {
  axis =
      (axis == -1 ? std::abs(static_cast<int>(out.size() - in.size())) : axis);
  std::vector<int> dims;
  for (int i = 0; i < axis; ++i) {
    dims.push_back(i);
  }
  for (int i = 0; i < in.size(); ++i) {
    if (out[i + axis] != in[i]) {
      dims.push_back(i + axis);
    }
  }
  for (int i = axis + in.size(); i < out.size(); ++i) {
    dims.push_back(i);
  }
  return dims;
}

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(const DeviceContext &dev_ctx,
                                           const DenseTensor &x,
                                           const DenseTensor *ddx,
                                           DenseTensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
473 474
    auto meta = phi::DenseTensorMeta(x.dtype(), x.dims(), x.layout());
    *ddx_safe = phi::Empty(dev_ctx, std::move(meta));
475
    ddx_safe->mutable_data(dev_ctx.GetPlace());
476
    SetConstant<DeviceContext, T> set_zero;
477 478 479 480 481 482 483 484 485 486 487
    set_zero(dev_ctx, ddx_safe, static_cast<T>(0));
  }
}

inline void ElementwiseGradPreProcess(const DenseTensor &dout,
                                      DenseTensor *dx) {
  if (dx != nullptr) {
    dx->set_lod(dout.lod());
  }
}

488
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
489

490 491 492 493 494 495 496
// static unroller
template <template <int Index, int VecSize> typename Func,
          int VecSize,
          int End,
          int Begin = 0>
struct Unroller {
  template <typename... Args>
497
  static HOSTDEVICE inline void step(Args &&...args) {
498 499 500 501 502 503 504 505
    Func<Begin, VecSize>::Apply(std::forward<Args>(args)...);
    Unroller<Func, VecSize, End, Begin + 1>::step(args...);
  }
};

template <template <int Index, int VecSize> typename Func, int VecSize, int End>
struct Unroller<Func, VecSize, End, End> {
  template <typename... Args>
506
  static HOSTDEVICE inline void step(Args &&...args) {}
507 508 509 510 511 512 513
};

template <int Index, int VecSize>
struct Loader {
  template <typename Array, typename ArgsT>
  static __device__ void Apply(const Array &in,
                               ArgsT *args,
514
                               kps::IndexType offset,
515
                               int num,
516
                               int read_lens,
517 518
                               bool is_boundary) {
    using Type = std::tuple_element_t<Index, ArgsT>;
519 520
    kps::Init<Type, ArgsT, Index, VecSize>(
        args, static_cast<Type>(1.0f), read_lens);
521
    if (is_boundary) {
522
      kps::ReadData<Type, VecSize, 1, ArgsT, Index, true>(
523
          args,
524
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + offset,
525 526
          num,
          read_lens);
527
    } else {
528
      kps::ReadData<Type, VecSize, 1, ArgsT, Index, false>(
529
          args,
530
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + offset,
531 532
          num,
          read_lens);
533 534 535 536 537 538 539 540 541
    }
  }
};

template <int Index, int VecSize>
struct InputSetter {
  template <typename Array>
  static HOSTDEVICE void Apply(
      const std::vector<const DenseTensor *> &ins_tensor, Array *ins_data) {
542
    (*ins_data)[Index] = (const _ptr_ char *)(ins_tensor[Index]->data());
543 544 545 546 547 548 549 550 551 552
  }
};

template <int Index, int VecSize>
struct VecSizeGetter {
  template <typename ArgsT>
  static HOSTDEVICE void Apply(const std::vector<const DenseTensor *> &ins,
                               const ArgsT &args,
                               int *vec_size) {
    using Type = std::tuple_element_t<Index, ArgsT>;
553 554
    *vec_size = std::min<int>(*vec_size,
                              phi::GetVectorizedSize(ins[Index]->data<Type>()));
555 556 557 558
  }
};

template <typename OutT, typename Functor>
559 560
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
                                const std::vector<DenseTensor *> &outs) {
561 562 563
#ifdef PADDLE_WITH_XPU_KP
  int vec_size = 256;
#else
564 565 566
  using Traits = paddle::platform::FunctionTraits<Functor>;
  using ArgsT = typename Traits::ArgsTuple;
  const int Arity = Traits::arity;
567
  int vec_size = 4;
568 569 570
  ArgsT arg;
  // The Arg VecSize=1 is to match the Unroller template.
  Unroller<VecSizeGetter, 1, Arity>::step(ins, arg, &vec_size);
571
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
572 573
    vec_size =
        std::min<int>(vec_size, phi::GetVectorizedSize((*iter)->data<OutT>()));
574
  }
575
#endif
576 577 578 579 580 581 582 583 584 585 586 587
  return vec_size;
}

template <typename InT,
          typename OutT,
          int VecSize,
          typename Functor,
          int Arity,
          bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
588 589
                                    OutT *result,
                                    int read_lens);
590 591 592 593 594 595
};

template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
596 597
                                    OutT *result,
                                    int read_lens) {
598
    kps::ElementwiseAny<InT, OutT, VecSize, 1, Arity, Functor>(
599 600 601 602
        result, args, func);
  }
};

603 604 605 606
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 0, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
607 608
                                    OutT *result,
                                    int read_lens) {
609
    kps::ElementwiseConstant<InT, OutT, VecSize, 1, Functor>(result, func);
610 611 612
  }
};

613 614 615 616
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
617 618
                                    OutT *result,
                                    int read_lens) {
619
    kps::ElementwiseUnary<InT, OutT, VecSize, 1, Functor>(
620 621 622 623 624 625 626 627
        result, args[0], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
628 629
                                    OutT *result,
                                    int read_lens) {
630
    kps::ElementwiseBinary<InT, OutT, VecSize, 1, Functor>(
631
        result, args[0], args[1], func, read_lens);
632 633 634 635 636 637 638
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
639 640
                                    OutT *result,
                                    int read_lens) {
641
    kps::ElementwiseTernary<InT, OutT, VecSize, 1, Functor>(
642 643 644 645
        result, args[0], args[1], args[2], func);
  }
};

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
namespace detail {
template <class F, class Tuple, std::size_t... Index>
// GCC/Clang need the decltype() return type
HOSTDEVICE constexpr decltype(auto) ApplyImpl(F &&f,
                                              Tuple &&t,
                                              std::index_sequence<Index...>) {
  return std::forward<F>(f)(std::get<Index>(std::forward<Tuple>(t))...);
}
}  // namespace detail

template <class F, class Tuple>
HOSTDEVICE constexpr decltype(auto) Apply(F &&f, Tuple &&t) {
  return detail::ApplyImpl(
      std::forward<F>(f),
      std::forward<Tuple>(t),
      std::make_index_sequence<
          std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
}

template <typename OutT,
          int VecSize,
          typename Functor,
          typename ArgsT,
          int Arity>
struct SameDimsElementwisePrimitiveCaller {
671 672 673 674 675 676 677 678 679
  __device__ inline void operator()(Functor func,
                                    ArgsT *args,
                                    OutT *result,
                                    int read_lens) {
#ifdef PADDLE_WITH_XPU_KP
    for (int idx = 0; idx < read_lens; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
#else
680 681 682 683
#pragma unroll
    for (int idx = 0; idx < VecSize; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
684
#endif
685 686 687
  }
};

688 689 690 691 692
template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCallerBc {
  __device__ __forceinline__ void operator()(
      phi::Array<_ptr_ OutT *, NumOuts> outs,
      ConditionalT<OutT, NumOuts> src[VecSize],
693
      kps::IndexType block_offset,
694 695 696 697 698 699 700 701 702 703 704 705
      int num,
      int read_lens) {
    OutT dst[NumOuts][VecSize];
#pragma unroll
    for (int i = 0; i < read_lens; ++i) {
#pragma unroll
      for (int j = 0; j < NumOuts; ++j) {
        dst[j][i] = (src[i])[j];
      }
    }
#pragma unroll
    for (int i = 0; i < NumOuts; ++i) {
706
      kps::WriteData<OutT, VecSize, 1, IsBoundary>(
707 708 709 710 711 712 713 714 715
          outs[i] + block_offset, dst[i], num, read_lens);
    }
  }
};

template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, 1> {
  __device__ __forceinline__ void operator()(phi::Array<_ptr_ OutT *, 1> outs,
                                             OutT src[VecSize],
716
                                             kps::IndexType block_offset,
717 718
                                             int num,
                                             int read_lens) {
719
    kps::WriteData<OutT, VecSize, 1, IsBoundary>(
720 721 722 723
        outs[0] + block_offset, src, num, read_lens);
  }
};

724
template <typename OutT,
725 726 727 728 729 730
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
731 732
    const phi::Array<const _ptr_ char *__restrict__, Arity> &in,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
733
    kps::IndexType offset,
734
    int num,
735
    int read_lens,
736
    Functor func) {
737 738 739
  using Traits = paddle::platform::FunctionTraits<Functor>;
  using ArgsT = typename Traits::ArgsTuple;
  ArgsT args[VecSize];
740 741
  ConditionalT<OutT, NumOuts> result[VecSize];

742
  Unroller<Loader, VecSize, Arity>::step(
743
      in, args, offset, num, read_lens, IsBoundary);
744

745 746 747 748
  SameDimsElementwisePrimitiveCaller<ConditionalT<OutT, NumOuts>,
                                     VecSize,
                                     Functor,
                                     ArgsT,
749
                                     Arity>()(func, args, result, read_lens);
750

751
  ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, NumOuts>()(
752
      outs, result, offset, num, read_lens);
753 754
}

755
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
756
__global__ void VectorizedElementwiseKernel(
757 758
    phi::Array<const _ptr_ char *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
759 760
    kps::IndexType numel,
    kps::IndexType main_offset,
761
    int read_lens,
762
    Functor func) {
763 764
  kps::IndexType data_offset = BLOCK_ID_X * BLOCK_NUM_X * read_lens;
  kps::IndexType stride = BLOCK_NUM_X * GRID_NUM_X * read_lens;
765
  for (; data_offset < main_offset; data_offset += stride) {
766
    VectorizedElementwiseKernelImpl<OutT,
767 768 769 770 771
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    false>(
772
        ins, outs, data_offset, read_lens * BLOCK_NUM_X, read_lens, func);
773 774
  }

775
  kps::IndexType remain = numel - data_offset;
776
  if (remain > 0) {
777
    VectorizedElementwiseKernelImpl<OutT,
778 779 780 781
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
782
                                    true>(
783
        ins, outs, data_offset, static_cast<int>(remain), read_lens, func);
784 785 786
  }
}

787
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
788 789 790 791 792 793 794 795
void LaunchElementwiseCudaKernel(const KPDevice &ctx,
                                 const std::vector<const DenseTensor *> &ins,
                                 std::vector<DenseTensor *> *outs,
                                 Functor func) {
  // There are at least 1 output, but maybe 0 input (ins.size() == 0).
  // For large tensor numel * sizeof(T) > 2^31, we must use int64_t as index
  // type.
  int64_t numel = (*outs)[0]->numel();
796 797
  phi::Array<const _ptr_ char *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
798

799
  Unroller<InputSetter, VecSize, Arity>::step(ins, &ins_data);
800
  for (int i = 0; i < NumOuts; ++i) {
801
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
802
  }
803
#ifdef PADDLE_WITH_XPU_KP
804 805
  int block_size = 64;
  int grid_size = 8;
806
  int read_lens = kps::details::GetXpuReadLens(numel, block_size, grid_size);
807
  auto stream = ctx.x_context()->xpu_stream;
808 809
  int64_t main_offset =
      (numel / (read_lens * block_size)) * read_lens * block_size;
810 811
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize>
      <<<grid_size, block_size, 0, stream>>>(
812
          ins_data, outs_data, numel, main_offset, read_lens, func);
813
#else
W
Wilber 已提交
814
  auto gpu_config =
815
      phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize);
816 817
  int64_t main_offset = (numel / (VecSize * gpu_config.GetBlockSize())) *
                        VecSize * gpu_config.GetBlockSize();
818
  auto stream = ctx.stream();
819 820
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize>
      <<<gpu_config.block_per_grid, gpu_config.thread_per_block, 0, stream>>>(
821
          ins_data, outs_data, numel, main_offset, VecSize, func);
822 823 824
#endif
}

825
template <typename OutT, typename Functor, int NumOuts = 1>
826 827 828 829
void ElementwiseKernel(const KPDevice &ctx,
                       const std::vector<const DenseTensor *> &ins,
                       std::vector<DenseTensor *> *outs,
                       Functor func) {
830
  using Traits = paddle::platform::FunctionTraits<Functor>;
831
  const int kArity = Traits::arity;
832 833
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
834
                    phi::errors::InvalidArgument(
835
                        "The number of inputs is expected to be equal to the "
836
                        "arity of functor. But received: the number of inputs "
837 838 839 840 841
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
842
                    phi::errors::InvalidArgument(
843 844 845 846 847 848 849 850 851 852
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));

  if (NumOuts > 1) {
    for (int i = 1; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
853
          phi::errors::InvalidArgument(
854 855 856 857 858 859 860
              "The shape of each output tensor shall be identical yet, "
              "but %dth output tensor`s shape is not.",
              i));
    }
  }

  // calculate the max vec_size for all ins and outs
861
  int vec_size = GetVectorizedSizeForTensors<OutT, Functor>(ins, *outs);
862
  switch (vec_size) {
863
    case VecSizeL:
864
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeL>(
865
          ctx, ins, outs, func);
866
      break;
867
    case VecSizeM:
868
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeM>(
869
          ctx, ins, outs, func);
870
      break;
871
    case VecSizeS:
872
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeS>(
873
          ctx, ins, outs, func);
874 875
      break;
    default: {
876
      PADDLE_THROW(phi::errors::Unimplemented(
877 878 879 880 881
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}
882

883 884
#endif

885
}  // namespace funcs
886
}  // namespace phi