norm_op.h 4.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23 24 25 26 27 28 29 30 31 32 33 34 35
inline void GetDims(const framework::DDim& dim, int axis, int* pre, int* n,
                    int* post) {
  *pre = 1;
  *post = 1;
  *n = dim[axis];
  for (int i = 0; i < axis; ++i) {
    (*pre) *= dim[i];
  }
  for (int i = axis + 1; i < dim.size(); ++i) {
    (*post) *= dim[i];
  }
}

template <typename DeviceContext, typename T>
36 37
class NormKernel : public framework::OpKernel<T> {
 public:
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* out_y = ctx.Output<framework::Tensor>("Out");
    auto* out_norm = ctx.Output<framework::Tensor>("Norm");
    out_y->mutable_data<T>(ctx.GetPlace());
    out_norm->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    auto ndim = out_norm->dims();
    T eps = static_cast<T>(ctx.Attr<float>("epsilon"));
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
    GetDims(xdim, axis, &pre, &n, &post);

    auto* place = ctx.template device_context<DeviceContext>().eigen_device();

    Eigen::DSizes<int, 3> shape(pre, n, post);
    Eigen::DSizes<int, 2> norm_shape(pre, post);

    auto x_e = framework::EigenVector<T>::Flatten(*in_x);
    auto y_e = framework::EigenVector<T>::Flatten(*out_y);
    auto norm_e = framework::EigenVector<T>::Flatten(*out_norm);
    auto x = x_e.reshape(shape);
    auto y = y_e.reshape(shape);
    auto norm = norm_e.reshape(norm_shape);

    Eigen::DSizes<int, 1> rdim(1);
    // y = x / sqrt((sum(x * x) + epsilon))
    // norm = sqrt(sum(x * x) + epsilon)
    auto sum = x.pow(2).sum(rdim) + eps;
    norm.device(*place) = sum.sqrt();
    // y = x / norm
    Eigen::DSizes<int, 3> rshape(pre, 1, post);
    Eigen::DSizes<int, 3> bcast(1, n, 1);
    y.device(*place) = x / norm.reshape(rshape).broadcast(bcast);
74 75
  }
};
S
sweetsky0901 已提交
76
template <typename DeviceContext, typename T, typename AttrType = T>
77 78
class NormGradKernel : public framework::OpKernel<T> {
 public:
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* in_x = ctx.Input<framework::Tensor>("X");
    auto* in_norm = ctx.Input<framework::Tensor>("Norm");
    auto* in_dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* out_dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    out_dx->mutable_data<T>(ctx.GetPlace());

    auto xdim = in_x->dims();
    int axis = ctx.Attr<int>("axis");
    if (axis < 0) axis = xdim.size() + axis;
    int pre, n, post;
    GetDims(xdim, axis, &pre, &n, &post);

    auto* place = ctx.template device_context<DeviceContext>().eigen_device();

    auto x_e = framework::EigenVector<T>::Flatten(*in_x);
    auto dy_e = framework::EigenVector<T>::Flatten(*in_dy);
    auto norm_e = framework::EigenVector<T>::Flatten(*in_norm);
    auto dx_e = framework::EigenVector<T>::Flatten(*out_dx);

    Eigen::DSizes<int, 3> shape(pre, n, post);
    Eigen::DSizes<int, 2> norm_shape(pre, post);
    auto x = x_e.reshape(shape);
    auto dy = dy_e.reshape(shape);
    auto norm = norm_e.reshape(norm_shape);
    auto dx = dx_e.reshape(shape);

    framework::Tensor rsum;
    rsum.mutable_data<T>({pre, post}, ctx.GetPlace());
    auto sum = framework::EigenTensor<T, 2>::From(rsum);

    Eigen::DSizes<int, 1> rdim(1);
    Eigen::DSizes<int, 3> bcast(1, n, 1);
    Eigen::DSizes<int, 3> rshape(pre, 1, post);

    // dx = ( dy/sqrt(sum(x*x)) ) * [1 - x*sum(x) / (sum(x*x) + e)]
    //    = [dy - dy * x * sum(x) / (sum(x*x) + e)] / sqrt(sum(x*x))
    //    = [dy - x * sum(x*dy) / (sum(x*x) + e)] / sqrt(sum(x*x))
    // 1. sum = sum(x*dy)
    sum.device(*place) = (x * dy).sum(rdim);
    // 2. dx = x * sum
    dx.device(*place) = sum.reshape(rshape).broadcast(bcast) * x;
    // 3. dx / (sum(x*x) + e)
    // where, norm.pow(2) = sum(x*x) + e, which is calculated in forward.
    dx.device(*place) = dx / norm.pow(2).broadcast(bcast);
    // 4. [dy - dx] / sqrt(sum(x*x))
    dx.device(*place) = (dy - dx) / norm.broadcast(bcast);
126 127 128 129
  }
};
}  // namespace operators
}  // namespace paddle