program_config.py 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import enum
16
from typing import Any, Callable, Dict, List, Optional
17

18
import numpy as np
19

20 21 22
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
23
from paddle.fluid.executor import global_scope
24 25 26 27 28 29
from paddle.fluid.framework import (
    IrGraph,
    IrNode,
    Operator,
    convert_np_dtype_to_dtype_,
)
30 31 32 33
from paddle.static.quantization import (
    QuantizationFreezePass,
    QuantizationTransformPass,
)
34

35 36 37 38 39 40

class TensorConfig:
    '''
    A config builder for a input or a weight.
    '''

41 42 43 44 45 46
    def __init__(
        self,
        lod: Optional[List[List[int]]] = None,
        data_gen: Optional[Callable[..., np.array]] = None,
        shape: Optional[List[List[int]]] = None,
    ):
47 48 49
        '''
        shape: The shape of the tensor.
        dtype: The data type of the tensor.
50
        data: The value of WeightVar. for input, it should be None
51
        '''
W
Wilber 已提交
52
        self.lod = lod
J
Jason 已提交
53 54 55 56 57 58
        if data_gen is not None:
            self.data_gen = data_gen
            self.data = data_gen()
            self.dtype = data_gen().dtype
            self.shape = data_gen().shape
        else:
59 60 61
            assert (
                shape is not None
            ), "While data_gen is not defined, shape must not be None"
J
Jason 已提交
62 63 64
            self.data = np.random.normal(0.0, 1.0, shape).astype(np.float32)
            self.shape = shape
            self.dtype = self.data.dtype
65 66 67

    def __repr__(self):
        return str({'shape': self.shape, 'lod': self.lod, 'dtype': self.dtype})
68 69


W
Wilber 已提交
70 71 72 73 74 75
class VarType(enum.Enum):
    LOD_TENSOR = 1
    LOD_TENSOR_ARRAY = 2
    STEP_SCOPES = 3


76
class OpConfig:
77 78 79 80 81 82 83 84 85 86 87 88
    '''A config builder for generating a Op.'''

    def __init__(
        self,
        type: str,
        inputs: Dict[str, List[str]],
        outputs: Dict[str, List[str]],
        attrs: Dict[str, Any] = None,
        outputs_var_type: Dict[str, VarType] = None,
        outputs_dtype: Dict[str, np.dtype] = None,
        **kwargs,
    ):
89 90 91
        self.type = type
        self.inputs = inputs
        self.outputs = outputs
W
Wilber 已提交
92 93
        self.outputs_dtype = outputs_dtype
        self.outputs_var_type = outputs_var_type
94
        self.attrs = attrs
J
Jason 已提交
95 96 97
        if self.attrs is None:
            self.attrs = dict()
        self.attrs.update(kwargs)
98

99 100 101 102 103
    def __repr__(self):
        log_str = self.type
        log_str += str(self.attrs)
        return log_str

104

W
Wilber 已提交
105
_OP_WITHOUT_KERNEL_SET = {
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    'feed',
    'fetch',
    'recurrent',
    'go',
    'rnn_memory_helper_grad',
    'conditional_block',
    'while',
    'send',
    'recv',
    'listen_and_serv',
    'fl_listen_and_serv',
    'ncclInit',
    'select',
    'checkpoint_notify',
    'gen_bkcl_id',
    'c_gen_bkcl_id',
    'gen_nccl_id',
    'c_gen_nccl_id',
    'c_comm_init',
    'c_sync_calc_stream',
    'c_sync_comm_stream',
    'queue_generator',
    'dequeue',
    'enqueue',
    'heter_listen_and_serv',
    'c_wait_comm',
    'c_wait_compute',
    'c_gen_hccl_id',
    'c_comm_init_hccl',
    'copy_cross_scope',
W
Wilber 已提交
136 137 138 139
}


class BlockConfig:
140 141 142 143 144 145 146 147 148 149
    '''A config builder for generating a Block.'''

    def __init__(
        self,
        ops: List[OpConfig],
        vars: List[str],
        vars_dtype: Dict[str, np.dtype] = None,
        vars_var_type: Dict[str, VarType] = None,
        vars_lod_level: Dict[str, int] = None,
    ):
W
Wilber 已提交
150 151 152 153 154 155 156 157
        self.ops = ops
        self.vars = vars
        self.vars_dtype = vars_dtype
        self.vars_var_type = vars_var_type
        self.vars_lod_level = vars_lod_level

    def fill_block_desc(self, block_desc):
        for name in self.vars:
158
            var_desc = block_desc.var(name.encode())
W
Wilber 已提交
159
            var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
160 161 162
            if (
                self.vars_lod_level is not None
                and name in self.vars_lod_level.keys()
W
Wilber 已提交
163 164
            ):
                var_desc.set_lod_level(self.vars_lod_level[name])
165 166 167
            if (
                self.vars_var_type is not None
                and name in self.vars_var_type.keys()
W
Wilber 已提交
168 169 170 171 172 173 174 175 176
            ):
                if self.vars_var_type[name] == VarType.LOD_TENSOR_ARRAY:
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                elif self.vars_var_type[name] == VarType.STEP_SCOPES:
                    var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                    continue
            var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
            if self.vars_dtype is not None and name in self.vars_dtype.keys():
                var_desc.set_dtype(
177 178
                    convert_np_dtype_to_dtype_(self.vars_dtype[name])
                )
W
Wilber 已提交
179 180 181 182 183 184 185 186 187 188 189

        for op_config in self.ops:
            op_desc = block_desc.append_op()
            op_desc.set_type(op_config.type)
            for name, values in op_config.inputs.items():
                op_desc.set_input(name, values)
            for name, values in op_config.attrs.items():
                op_desc._set_attr(name, values)
            for name, values in op_config.outputs.items():
                op_desc.set_output(name, values)
                for v in values:
190
                    if block_desc.has_var_recursive(v.encode()):
W
Wilber 已提交
191
                        continue
192
                    var_desc = block_desc.var(v.encode())
W
Wilber 已提交
193
                    var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
194 195 196
                    if (
                        op_config.outputs_var_type is not None
                        and v in op_config.outputs_var_type.keys()
W
Wilber 已提交
197
                    ):
198 199 200 201
                        if (
                            op_config.outputs_var_type[v]
                            == VarType.LOD_TENSOR_ARRAY
                        ):
W
Wilber 已提交
202
                            var_desc.set_type(
203 204 205 206 207
                                core.VarDesc.VarType.LOD_TENSOR_ARRAY
                            )
                        elif (
                            op_config.outputs_var_type[v] == VarType.STEP_SCOPES
                        ):
W
Wilber 已提交
208 209 210
                            var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                            continue
                    var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
211 212 213
                    if (
                        op_config.outputs_dtype is not None
                        and v in op_config.outputs_dtype.keys()
W
Wilber 已提交
214 215
                    ):
                        var_desc.set_dtype(
216
                            convert_np_dtype_to_dtype_(
217 218 219
                                op_config.outputs_dtype[v]
                            )
                        )
W
Wilber 已提交
220 221 222 223 224 225
            if op_config.type not in _OP_WITHOUT_KERNEL_SET:
                op_desc.infer_var_type(block_desc)
                op_desc.infer_shape(block_desc)
            op_desc.check_attrs()


226
class ProgramConfig:
227 228 229 230 231 232 233 234 235
    '''A config builder for generating a Program.'''

    def __init__(
        self,
        ops: List[OpConfig],
        weights: Dict[str, TensorConfig],
        inputs: Dict[str, TensorConfig],
        outputs: List[str],
    ):
236
        self.ops = ops
W
Wilber 已提交
237 238 239 240 241 242 243 244 245 246 247
        # if no weight need to save, we create a place_holder to help seriazlie params.
        if not weights:

            def generate_weight():
                return np.array([1]).astype(np.float32)

            self.weights = {
                "place_holder_weight": TensorConfig(data_gen=generate_weight)
            }
        else:
            self.weights = weights
248 249 250
        self.inputs = inputs
        self.outputs = outputs

251 252 253 254 255 256 257 258 259 260
    def __repr__(self):
        log_str = ''
        for i in range(len(self.ops)):
            if i != len(self.ops) - 1:
                log_str += repr(self.ops[i]) + ' + '
            else:
                log_str += repr(self.ops[i])
        log_str += ' -- '
        for t, v in self.inputs.items():
            log_str += '[' + t + ': ' + str(v) + ']'
261 262
        for t, v in self.weights.items():
            log_str += '[' + t + ': ' + str(v) + ']'
263 264 265

        return log_str

266 267

def create_fake_model(program_config):
268
    '''Create a Paddle model(in memory) according to the given config.'''
269 270 271 272 273
    paddle.enable_static()
    main_program_desc = core.ProgramDesc()
    util_program = fluid.Program()
    main_block_desc = main_program_desc.block(0)

274
    var_desc = main_block_desc.var(b"feed")
275 276 277 278 279
    var_desc.set_type(core.VarDesc.VarType.FEED_MINIBATCH)
    var_desc.set_persistable(True)

    index = 0
    for name, tensor_config in program_config.inputs.items():
280
        var_desc = main_block_desc.var(name.encode())
281 282 283 284
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_need_check_feed(True)
W
Wilber 已提交
285 286
        if tensor_config.lod is not None:
            var_desc.set_lod_level(len(tensor_config.lod))
287 288 289 290 291 292 293 294 295
        op_desc = main_block_desc._prepend_op()
        op_desc.set_type("feed")
        op_desc.set_input('X', ["feed"])
        op_desc.set_output('Out', [name])
        op_desc._set_attr("col", index)
        index = index + 1

    save_var_map = {}
    for name, tensor_config in program_config.weights.items():
296
        var_desc = main_block_desc.var(name.encode())
297 298 299 300 301 302 303 304 305 306
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_persistable(True)

        save_var_map[name] = util_program.global_block().create_parameter(
            dtype=tensor_config.dtype,
            shape=tensor_config.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            name=name,
307
            initializer=paddle.nn.initializer.Assign(tensor_config.data),
308
        )
309 310 311 312 313
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var = util_program.global_block().create_var(
314 315
        type=core.VarDesc.VarType.RAW, name="out_var_0"
    )
316
    out_var.desc.set_persistable(True)
317 318 319 320 321 322
    util_program.global_block().append_op(
        type='save_combine',
        inputs={'X': in_vars},
        outputs={'Y': out_var},
        attrs={'file_path': '', 'save_to_memory': True},
    )
323 324 325 326 327 328
    for op_config in program_config.ops:
        op_desc = main_block_desc.append_op()
        op_desc.set_type(op_config.type)
        for name, values in op_config.inputs.items():
            op_desc.set_input(name, values)
        for name, values in op_config.attrs.items():
W
Wilber 已提交
329 330 331 332 333 334
            if name == 'sub_block':
                sub_block_desc = main_program_desc.append_block(main_block_desc)
                values.fill_block_desc(sub_block_desc)
                op_desc._set_attr(name, sub_block_desc)
            else:
                op_desc._set_attr(name, values)
335 336
        for name, values in op_config.outputs.items():
            op_desc.set_output(name, values)
337
            for v in values:
338
                if main_block_desc.has_var_recursive(v.encode()):
W
Wilber 已提交
339
                    continue
340
                var_desc = main_block_desc.var(v.encode())
341
                var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
342 343 344
                if (
                    op_config.outputs_var_type is not None
                    and v in op_config.outputs_var_type.keys()
W
Wilber 已提交
345
                ):
346 347 348 349
                    if (
                        op_config.outputs_var_type[v]
                        == VarType.LOD_TENSOR_ARRAY
                    ):
W
Wilber 已提交
350 351 352 353 354
                        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR_ARRAY)
                    elif op_config.outputs_var_type[v] == VarType.STEP_SCOPES:
                        var_desc.set_type(core.VarDesc.VarType.STEP_SCOPES)
                        continue
                var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
355 356 357
                if (
                    op_config.outputs_dtype is not None
                    and v in op_config.outputs_dtype.keys()
W
Wilber 已提交
358 359
                ):
                    var_desc.set_dtype(
360 361
                        convert_np_dtype_to_dtype_(op_config.outputs_dtype[v])
                    )
W
Wilber 已提交
362 363 364 365
        if op_config.type not in _OP_WITHOUT_KERNEL_SET:
            op_desc.infer_var_type(main_block_desc)
            op_desc.infer_shape(main_block_desc)
        op_desc.check_attrs()
366 367

    for index, name in enumerate(program_config.outputs):
368
        var_desc = main_block_desc.var(b"fetch")
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        var_desc.set_type(core.VarDesc.VarType.FETCH_LIST)
        var_desc.set_need_check_feed(True)
        op_desc = main_block_desc.append_op()
        op_desc.set_type("fetch")
        op_desc.set_input('X', [name])
        op_desc.set_output('Out', ["fetch"])
        op_desc._set_attr("col", index)

    main_program_desc._set_version()
    paddle.fluid.core.save_op_version_info(main_program_desc)

    model = main_program_desc.serialize_to_string()

    util_program._sync_with_cpp()
    place = fluid.CPUPlace()
    executor = fluid.Executor(place)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        executor.run(util_program)
        params = scope.find_var("out_var_0").get_bytes()
389

390
    return model, params
391 392


393 394 395 396 397 398 399
def create_quant_model(
    model,
    params,
    activation_quantize_type='moving_average_abs_max',
    weight_quantize_type='channel_wise_abs_max',
    save=False,
):
400 401 402
    place = paddle.CUDAPlace(0)
    scope = global_scope()
    exe = paddle.static.Executor(place)
403 404 405 406 407 408 409 410 411 412
    [
        inference_program,
        feed_target_names,
        fetch_targets,
    ] = paddle.static.load_inference_model(
        path_prefix=None,
        executor=exe,
        model_filename=model,
        params_filename=params,
    )
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    graph = IrGraph(core.Graph(inference_program.desc), for_test=True)

    out_scale_op_list = [
        "conv2d",
        "depthwise_conv2d",
        "mul",
        "matmul",
        "relu",
        "leaky_relu",
        "relu6",
        "sigmoid",
        "tanh",
        "prelu",
        "swish",
        "softmax",
        "batch_norm",
        "layer_norm",
        "elementwise_add",
        "pool2d",
        "reshape2",
        "transpose2",
        "concat",
        "elementwise_mul",
        "scale",
        "slice",
        "hard_swish",
        "hard_sigmoid",
        "conv2d_transpose",
        "gru",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "flatten",
        "flatten2",
        "transpose",
        "pad2d",
        "reshape",
        "layer_norm",
451 452
        "quantize",
        "dequantize",
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    ]
    op_real_in_out_name = {
        "conv2d": [["Input", "Filter"], ["Output"]],
        "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
        "conv2d_transpose": [["Input", "Filter"], ["Output"]],
        "mul": [["X", "Y"], ["Out"]],
        "matmul": [["X", "Y"], ["Out"]],
        "pool2d": [["X"], ["Out"]],
        "elementwise_add": [["X", "Y"], ["Out"]],
        "concat": [["X"], ["Out"]],
        "softmax": [["X"], ["Out"]],
        "argmax": [["X"], ["Out"]],
        "transpose": [["X"], ["Out"]],
        "equal": [["X", "Y"], ["Out"]],
        "gather": [["X"], ["Out"]],
        "greater_equal": [["X", "Y"], ["Out"]],
        "greater_than": [["X", "Y"], ["Out"]],
        "less_equal": [["X", "Y"], ["Out"]],
        "less_than": [["X", "Y"], ["Out"]],
        "mean": [["X"], ["Out"]],
        "not_equal": [["X", "Y"], ["Out"]],
        "reshape": [["X"], ["Out"]],
        "reshape2": [["X"], ["Out"]],
        "transpose2": [["X"], ["Out"]],
        "bilinear_interp": [["X"], ["Out"]],
        "nearest_interp": [["X"], ["Out"]],
        "trilinear_interp": [["X"], ["Out"]],
        "slice": [["Input"], ["Out"]],
        "squeeze": [["X"], ["Out"]],
        "elementwise_sub": [["X", "Y"], ["Out"]],
        "relu": [["X"], ["Out"]],
        "relu6": [["X"], ["Out"]],
        "leaky_relu": [["X"], ["Out"]],
        "prelu": [["X"], ["Out"]],
        "tanh": [["X"], ["Out"]],
        "swish": [["X"], ["Out"]],
        "dropout": [["X"], ["Out"]],
        "batch_norm": [["X"], ["Y"]],
        "layer_norm": [["X"], ["Y"]],
        "sigmoid": [["X"], ["Out"]],
        "elementwise_mul": [["X", "Y"], ["Out"]],
        "scale": [["X"], ["Out"]],
        "hard_swish": [["X"], ["Out"]],
        "hard_sigmoid": [["X"], ["Out"]],
        "gru": [["Input", "Weight"], ["Hidden"]],
        "lstm": [["Input", "Weight"], ["Hidden"]],
        "pad2d": [["X"], ["Out"]],
        "flatten": [["X"], ["Out"]],
        "flatten2": [["X"], ["Out"]],
502 503
        "quantize": [["Input"], ["Output"]],
        "dequantize": [["Input"], ["Output"]],
504 505 506 507
    }

    def _get_op_output_var_names(op):
        """ """
508 509 510
        assert isinstance(
            op, (IrNode, Operator)
        ), "The input op should be IrNode or Operator."
511
        var_names = []
512
        op_name = op.name() if isinstance(op, IrNode) else op.type
513 514 515 516 517 518 519 520 521 522 523 524
        if op_name not in op_real_in_out_name:
            return []

        name_list = op_real_in_out_name[op_name][1]
        for name in name_list:
            var_name = op.output(name)
            if isinstance(var_name, list):
                var_names.extend(var_name)
            else:
                var_names.append(var_name)
        return var_names

W
Wilber 已提交
525 526 527 528
    transform_pass = QuantizationTransformPass(
        scope=scope,
        place=place,
        activation_quantize_type=activation_quantize_type,
529 530
        weight_quantize_type=weight_quantize_type,
    )
W
Wilber 已提交
531 532
    transform_pass.apply(graph)

533 534 535 536 537 538
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() in out_scale_op_list:
            var_names = _get_op_output_var_names(op_node)
            for var_name in var_names:
                in_node = graph._find_node_by_name(op_node.outputs, var_name)
539 540 541 542
                if in_node.dtype() not in [
                    core.VarDesc.VarType.FP64,
                    core.VarDesc.VarType.FP32,
                ]:
543 544 545 546 547 548
                    continue

                op_node.op()._set_attr("out_threshold", 3.0)

    # Freeze graph for inference, but the weight of fc/conv is still float type.
    freeze_pass = QuantizationFreezePass(
549 550
        scope=scope, place=place, weight_quantize_type=weight_quantize_type
    )
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    freeze_pass.apply(graph)

    main_program = graph.to_program()

    # modify fake_quantize_moving_average_abs_max(InScale) and fake_channel_wise_dequantize_max_abs(Scales)
    op_nodes = graph.all_op_nodes()
    for op_node in op_nodes:
        if op_node.name() == 'fake_quantize_moving_average_abs_max':
            var_name = op_node.input("InScale")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.array([1], dtype=np.float32), place)
        elif op_node.name() == 'fake_channel_wise_dequantize_max_abs':
            var_name = op_node.input("Scales")[0]
            tensor = scope.var(var_name).get_tensor()
            tensor.set(np.ones(tensor.shape(), dtype=np.float32), place)

    if save:
568 569 570 571 572 573 574
        fluid.io.save_inference_model(
            'test_inference_model',
            feed_target_names,
            fetch_targets,
            exe,
            main_program=main_program,
        )
575 576 577 578

    feed_vars = [
        main_program.global_block().var(name) for name in feed_target_names
    ]
579 580 581
    serialized_program = paddle.static.serialize_program(
        feed_vars, fetch_targets, program=main_program
    )
582
    serialized_params = paddle.static.serialize_persistables(
583 584
        feed_vars, fetch_targets, executor=exe, program=main_program
    )
585
    return serialized_program, serialized_params