transpose_kernel.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

void SetInMemDescWithSqueeze2FuseSupport(
    const std::vector<int> fused_squeeze2_axes,
    DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const std::set<int64_t> squeeze2_axes_set(fused_squeeze2_axes.begin(),
                                            fused_squeeze2_axes.end());
  const std::vector<int64_t>& x_vec_dims = in_md.dims();
  std::vector<int64_t> squeezed_op_tz(
      x_vec_dims.size() - fused_squeeze2_axes.size(), 0);

  int j = 0;
  for (size_t i = 0; i < x_vec_dims.size(); ++i) {
    if (squeeze2_axes_set.count(i) ||
        squeeze2_axes_set.count(i - x_vec_dims.size())) {
      PADDLE_ENFORCE_EQ(
          x_vec_dims[i],
          1,
          errors::InvalidArgument(
              "Squeeze2 input dim %d should be equal to one, but get %d.",
              i,
              x_vec_dims[i]));
      continue;
    }
    squeezed_op_tz[j++] = x_vec_dims[i];
  }

  in->set_mem_desc(in_md.reshape(squeezed_op_tz));
  in->Resize(make_ddim(squeezed_op_tz));
}

void SetInMemDescWithLogicalLayoutFusesSupport(
    const OneDNNContext& dev_ctx,
    DenseTensor* in,
    const dnnl::memory::desc& in_md) {
  const auto fused_squeeze2_axes =
      dev_ctx.HasDnnAttr("fused_squeeze2_axes")
          ? PADDLE_GET_CONST(std::vector<int>,
                             dev_ctx.GetDnnAttr("fused_squeeze2_axes"))
          : std::vector<int>();
  if (fused_squeeze2_axes.empty()) {
    in->set_mem_desc(in_md);
    in->Resize(make_ddim(in_md.dims()));
  } else {
    SetInMemDescWithSqueeze2FuseSupport(fused_squeeze2_axes, in, in_md);
  }
}

template <typename T, typename Context>
void TransposeKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const std::vector<int>& axis,
                     DenseTensor* out) {
  PADDLE_ENFORCE_EQ(
      dev_ctx.GetPlace().GetType() == AllocationType::CPU,
      true,
      errors::PreconditionNotMet("oneDNN Transpose kernel must use CPUPlace"));

  SetInMemDescWithLogicalLayoutFusesSupport(
      dev_ctx, const_cast<DenseTensor*>(&x), x.mem_desc());

  if (axis.size() == 1) {
82
    Copy<Context>(dev_ctx, x, x.place(), false, out);
83 84 85 86 87 88
    out->set_mem_desc(x.mem_desc());
    return;
  }

  auto x_vec_dims = vectorize(x.dims());
  auto x_type = funcs::ToOneDNNDataType(x.dtype());
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  dnnl::primitive_attr attrs;
  const int32_t mask = 0;
  const auto quantization_scale =
      dev_ctx.HasDnnAttr("scale")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("scale"))
          : 1.0f;
  const auto quantization_shift =
      dev_ctx.HasDnnAttr("shift")
          ? PADDLE_GET_CONST(float, dev_ctx.GetDnnAttr("shift"))
          : 0.0f;
  const auto output_data_type =
      dev_ctx.HasDnnAttr("output_data_type")
          ? PADDLE_GET_CONST(std::string,
                             dev_ctx.GetDnnAttr("output_data_type"))
          : "";
  const bool with_scale = quantization_scale != 1.0f;
  const bool with_shift = quantization_shift != 0.0f;

  if (with_scale) {
    attrs.set_output_scales(mask, {quantization_scale});
  }

  if (with_shift) {
    auto dst = output_data_type == "fp32" ? DNNL_ARG_SRC : DNNL_ARG_DST;
    attrs.set_zero_points(
        dst, mask, {static_cast<int32_t>(quantization_shift)});
  }

  DataType out_dtype;
  if (output_data_type == "bf16") {
    out_dtype = DataType::BFLOAT16;
  } else if (output_data_type == "int8") {
    out_dtype = DataType::INT8;
  } else if (output_data_type == "uint8") {
    out_dtype = DataType::UINT8;
  } else if (output_data_type == "fp32") {
    out_dtype = DataType::FLOAT32;
  } else {
    out_dtype = x.dtype();
  }
  auto out_type = phi::funcs::ToOneDNNDataType(out_dtype);

132
  funcs::ReorderOneDNNHandler reorder_handler(
133 134
      x_vec_dims, x.dtype(), x_type, out_dtype, out_type, dev_ctx.GetEngine());

135 136 137 138 139 140 141
  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      x.mem_desc(), funcs::to_void_cast(x.data<T>()));

  // a trick is used here to fake transpose of out_md, so later it will be
  // "untransposed", leaving output data in plain format tag
  std::vector<int64_t> fake_strides(axis.size());
  int total_stride = 1;
142
  for (int i = static_cast<int>(x_vec_dims.size()) - 1; i >= 0; --i) {
143
    fake_strides[axis[i]] = total_stride;
144
    total_stride *= x_vec_dims[axis[i]];
145
  }
146
  auto dst_md = dnnl::memory::desc(x_vec_dims, out_type, fake_strides);
147
  auto reorder_dst_memory_p =
148 149 150 151
      reorder_handler.AcquireDstMemory(out, dst_md, dev_ctx.GetPlace());

  auto reorder_p = reorder_handler.AcquireReorder(
      reorder_dst_memory_p, reorder_src_memory_p, attrs);
152 153 154 155 156 157 158 159 160 161 162

  auto& astream = OneDNNContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  // it is needed because oneDNN's permute axis understand axes order in
  // different way PaddlePaddle's transpose
  std::vector<int> permute_axis(axis.size());
  for (size_t i = 0; i < axis.size(); ++i) {
    permute_axis[axis[i]] = i;
  }
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  funcs::SetOutMemDescWithLogicalLayoutFusesSupport(
      dev_ctx,
      out,
      reorder_dst_memory_p->get_desc().permute_axes(permute_axis));
}
}  // namespace phi

PD_REGISTER_KERNEL(transpose,
                   OneDNN,
                   ONEDNN,
                   phi::TransposeKernel,
                   float,
                   uint8_t,
                   int8_t,
                   phi::dtype::bfloat16) {}