adamw.py 15.7 KB
Newer Older
Z
zhaoyingli 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
M
MRXLT 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from .adam import Adam
17
from ..fluid import core
M
MRXLT 已提交
18
from ..fluid import framework
R
Roc 已提交
19
from ..fluid.framework import Variable
20
from ..fluid.dygraph import base as imperative_base
21
from collections.abc import Callable
22
from .. import _C_ops
M
MRXLT 已提交
23
import paddle
24

25 26
__all__ = []

M
MRXLT 已提交
27

M
MRXLT 已提交
28
class AdamW(Adam):
29
    r"""
30
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
31 32 33 34 35 36 37
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

38
        moment\_1\_out & = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
39

40
        moemnt\_2\_out & = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
M
MRXLT 已提交
41

42 43
        learning\_rate & = learning\_rate * 
            \frac{\sqrt{1 - {\beta}_2^t}}{1 - {beta}_1^t}
M
MRXLT 已提交
44

45
        param\_out & = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
M
MRXLT 已提交
46 47 48


    Args:
49 50
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
Z
zhaoyingli 已提交
51 52
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. And you can specify different options for \
53 54 55 56
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
	    The default value is None in static mode, at this time all parameters will be updated.
M
MRXLT 已提交
57 58 59 60 61 62 63 64
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
65
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
66 67 68 69
        lr_ratio (function|None, optional): If it is not None, 
            the learning rate will be updated with layerwise learning rate ratio.
            Otherwise, the learning rate is the original.
            Default: None.
M
MRXLT 已提交
70
        apply_decay_param_fun (function|None, optional): If it is not None,
71
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
72
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
73
            Default: None.
74 75 76
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
77 78 79 80 81 82 83 84
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
85
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
86 87 88
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
89 90 91 92 93
    **Notes**:
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
C
Chen Long 已提交
94
            
M
MRXLT 已提交
95 96 97
            import paddle

            linear = paddle.nn.Linear(10, 10)
98
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.AdamW(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
                beta1=0.9)                   
            out.backward()
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
138 139 140 141 142 143 144
    """

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
M
MRXLT 已提交
145 146
                 parameters=None,
                 weight_decay=0.01,
147
                 lr_ratio=None,
M
MRXLT 已提交
148 149
                 apply_decay_param_fun=None,
                 grad_clip=None,
150
                 lazy_mode=False,
151
                 multi_precision=False,
152
                 name=None):
M
MRXLT 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
        coeff = weight_decay
        if not isinstance(coeff, float) and \
                not isinstance(coeff, framework.Variable):
            raise TypeError("coeff should be float or Tensor.")
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._coeff = coeff
170
        self._lr_to_coeff = dict()
171 172
        if lr_ratio is not None:
            assert isinstance(lr_ratio, Callable)
Z
zhaoyingli 已提交
173
            if not core.is_compiled_with_cuda():
174
                raise NotImplementedError(
Z
zhaoyingli 已提交
175
                    "'lr_ratio' is unimplemented in CPU, XPU and NPU")
176
        self._lr_ratio = lr_ratio
177

M
MRXLT 已提交
178
        super(AdamW, self).__init__(
M
MRXLT 已提交
179 180 181 182 183 184 185
            learning_rate=learning_rate,
            parameters=parameters,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            grad_clip=grad_clip,
            name=name,
186 187
            lazy_mode=lazy_mode,
            multi_precision=multi_precision)
188
        self._default_dict = {'coeff': coeff}
M
MRXLT 已提交
189

R
Roc 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
        self.type = "adamw"

        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()

    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
    def _append_decoupled_weight_decay(self, block, param_and_grad):
        """
        Add decoupled weight decay op.
            parameter = parameter - parameter * coeff * lr
        Args:
            block: block in which variable is to be created
            param_and_grad: (parameters, gradients) pairs,
                the parameters need to decay.
        Raises:
            Exception: The type of coeff and parameter is not consistent.
        """
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad

        if self._apply_decay_param_fun is not None \
                and not self._apply_decay_param_fun(param.name):
            return

        if isinstance(self._learning_rate, float):
            learning_rate = self._learning_rate
        else:
            # NOTE. We add this function to the _append_optimize_op(),
            # for we must make sure _create_param_lr() be called after
            # optimizer._create_global_learning_rate().
            learning_rate = self._create_param_lr(param_and_grad)

        with block.program._optimized_guard(
            [param, grad]), framework.name_scope('weight decay'):
            self._params_name.add(param.name)

            # If it has been calculated, the result will be reused.
            # NOTE(wangxi): In dygraph mode, apply_gradient will be executed
            # every step, so need clear _lr_to_coeff every step,
            # we do this in _create_optimization_pass
            decay_coeff = self._lr_to_coeff.get(learning_rate, None)
            if decay_coeff is None:
                # NOTE(wangxi): for pipeline to set device:all
                with paddle.static.device_guard(None):
                    decay_coeff = 1.0 - learning_rate * self._coeff
                self._lr_to_coeff[learning_rate] = decay_coeff

            find_master = (self._multi_precision and
                           param.dtype == core.VarDesc.VarType.FP16)
            if find_master:
                master_weight = self._master_weights[param.name]
                scaled_param = master_weight * decay_coeff
                paddle.fluid.layers.assign(
                    input=scaled_param, output=master_weight)
            else:
                scaled_param = param * decay_coeff
                paddle.fluid.layers.assign(input=scaled_param, output=param)

W
WangXi 已提交
257
    def _append_optimize_op(self, block, param_and_grad):
R
Roc 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        assert isinstance(block, framework.Block)
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad

        # Whether we should do weight decay for the parameter.
        with_decay = True
        if self._apply_decay_param_fun is not None \
                and not self._apply_decay_param_fun(param.name):
            with_decay = False

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)
        lr = self._create_param_lr(param_and_grad)

Z
zhaoyingli 已提交
283
        # create the adamw optimize op
J
Jiabin Yang 已提交
284
        if framework._non_static_mode():
285 286
            lr_ratio_ = 1. if self._lr_ratio is None else self._lr_ratio(
                param_and_grad[0])
R
Roc 已提交
287 288 289 290 291

            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
292

293
            _, _, _, _, _, _ = _C_ops.adamw(
R
Roc 已提交
294
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
295 296 297 298
                beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0],
                moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight,
                'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode,
                'min_row_size_to_use_multithread', 1000, 'beta1', _beta1,
Z
zhaoyingli 已提交
299 300
                'beta2', _beta2, "with_decay", with_decay, 'coeff', self._coeff,
                'multi_precision', find_master, 'lr_ratio', lr_ratio_)
R
Roc 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
            return None

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [lr],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc],
        }

        # Pass found_inf to adamw, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000,
            "multi_precision": find_master,
            "with_decay": with_decay,
            "coeff": self._coeff,
332 333
            "lr_ratio": 1.
            if self._lr_ratio is None else self._lr_ratio(param_and_grad[0])
R
Roc 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

        adamw_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True)

        return adamw_op
M
MRXLT 已提交
361

362 363 364 365 366 367 368
    def _create_optimization_pass(self, parameters_and_grads):
        optimize_ops = super(
            AdamW, self)._create_optimization_pass(parameters_and_grads)
        # In dygraph mode, clear _lr_to_coeff after applied gradient
        self._lr_to_coeff = dict()
        return optimize_ops

M
MRXLT 已提交
369 370
    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
371 372 373 374 375

    def _update_param_group(self, parameters):
        self._coeff = parameters.get('coeff', self._default_dict['coeff'])
        parameters = parameters.get('params')
        return parameters