operator.cc 14.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/operator.h"
16
#include <algorithm>
T
tensor-tang 已提交
17
#include <atomic>
18
#include "paddle/framework/lod_tensor_array.h"
19
#include "paddle/framework/shape_inference.h"
20
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
21 22 23 24

namespace paddle {
namespace framework {

Q
qijun 已提交
25
template <>
26
Eigen::DefaultDevice& ExecutionContext::GetEigenDevice<
Q
qijun 已提交
27
    platform::CPUPlace, Eigen::DefaultDevice>() const {
28
  return *device_context_.GetEigenDevice<platform::CPUPlace>();
Q
qijun 已提交
29 30
}

31
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
32
template <>
33
Eigen::GpuDevice&
34
ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
35
  return *device_context_.GetEigenDevice<platform::GPUPlace>();
Q
qijun 已提交
36 37 38
}
#endif

39
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
40
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
41
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
42 43
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
44
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
45 46
}

Y
Yu Yang 已提交
47 48
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
49
  auto it = inputs_.find(name);
50 51
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
52
  return it->second;
Y
Yan Chunwei 已提交
53 54
}

55
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
56
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
57
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
58 59
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
60
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
61 62
}

Y
Yu Yang 已提交
63 64
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
65
  auto it = outputs_.find(name);
66 67
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
68
  return it->second;
Y
Yan Chunwei 已提交
69 70
}

Q
Qiao Longfei 已提交
71 72
std::string OperatorBase::DebugString() const {
  std::stringstream ss;
Y
Yu Yang 已提交
73
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
74 75
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
76 77 78 79 80 81
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
82
    }
Y
Yu Yang 已提交
83
    ss << "]";
Y
Yu Yang 已提交
84 85
    ++it;
    if (it != inputs_.end()) {
86 87
      ss << ", ";
    }
Q
Qiao Longfei 已提交
88
  }
Y
Yu Yang 已提交
89
  ss << "}, outputs:{";
Y
Yu Yang 已提交
90 91
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
92 93 94 95 96 97
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
98
    }
Y
Yu Yang 已提交
99
    ss << "]";
Y
Yu Yang 已提交
100 101
    ++it;
    if (it != outputs_.end()) {
102 103
      ss << ", ";
    }
Q
Qiao Longfei 已提交
104
  }
Y
Yu Yang 已提交
105
  ss << "}.";
Q
Qiao Longfei 已提交
106 107 108
  return ss.str();
}

D
dongzhihong 已提交
109 110
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
111 112 113 114 115 116 117
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
118 119
}

Y
Yu Yang 已提交
120
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
121 122
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
123 124
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
125 126
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
127
}
128

Q
qijun 已提交
129 130
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
131
  for (auto& o : inputs_) {
Q
qijun 已提交
132 133 134 135 136 137
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
138 139 140 141 142 143 144 145 146 147
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
148
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
149 150

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
151
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
152 153 154 155 156 157 158 159 160
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
161 162
}

163 164 165
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
166
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
167 168 169

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
170
                   "Type %s's input %s is not set", Type(), in.name());
171 172 173 174
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
175
                   "Type %s's output %s is not set", Type(), out.name());
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

Q
QI JUN 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
    PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
    PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
  }
  return t;
}

216
template <>
217
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
218
  auto* var = InputVar(name);
219
  return var == nullptr ? nullptr : GetTensorFromVar(var);
220 221 222
}

template <>
223
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
224 225 226 227
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
228 229 230 231 232
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
233 234 235 236
  return res;
}

template <>
237
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
238
  auto var = OutputVar(name);
Q
QI JUN 已提交
239
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
240 241 242
}

template <>
243
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
244 245 246 247
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
248 249
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
250 251
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
252
                                         : GetMutableTensorFromVar(var);
253
                 });
254 255 256
  return res;
}

Y
Yu Yang 已提交
257
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key) {
258 259 260 261 262
  os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
     << "]";
  return os;
}

Y
Yu Yang 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
  }

369 370 371
  bool IsRuntime() const override { return true; }

 protected:
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
      PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
      PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
    }
  }

394 395 396 397 398 399
  VarDesc::VarType GetVarType(const std::string& name) const override {
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
                             const platform::DeviceContext& dev_ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);

  ExecutionContext ctx(*this, scope, dev_ctx);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
415 416
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
417 418 419 420
  }

  // check if op[type] have kernel for kernel_key
  OpKernelMap& kernels = kernels_iter->second;
Y
Yu Yang 已提交
421
  auto kernel_key = GetKernelType(ctx);
422 423 424
  auto kernel_iter = kernels.find(kernel_key);

  if (kernel_iter == kernels.end()) {
Y
Yu Yang 已提交
425
    PADDLE_THROW("The operator %s does not support %s", type_, kernel_key);
426 427 428
  }

  kernel_iter->second->Compute(ctx);
429 430 431

  // throws errors if have.
  dev_ctx.Finish();
432
}
Y
Yu Yang 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
OpKernelType OperatorWithKernel::GetKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.device_context());
}
DataType OperatorWithKernel::IndicateDataType(
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
  return static_cast<DataType>(data_type);
}
465

Q
Qiao Longfei 已提交
466
}  // namespace framework
L
liaogang 已提交
467
}  // namespace paddle