huber_loss_op.cc 5.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/huber_loss_op.h"
16 17 18
#include <memory>
#include <string>
#include <vector>
Y
yangyaming 已提交
19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class HuberLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27 28 29
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must be initialized.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must be initialized.");
Y
yangyaming 已提交
30

31 32
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
yangyaming 已提交
33

34
    PADDLE_ENFORCE_EQ(x_dims.size(), 2,
35 36
                      "The rank of Input(X) must be 2 and the shape is "
                      "[batch_size, 1].");
P
phlrain 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims, y_dims, "Shape of X and Y should be same");
    } else {
      if (x_dims[0] != -1 && y_dims[0] != -1) {
        PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
                          "The dim 0 of X and Y must be the same.");
      }

      if (x_dims[1] != -1 && y_dims[1] != -1) {
        PADDLE_ENFORCE_EQ(x_dims[1], y_dims[1],
                          "The dim 1 of X and Y must be the same.");
      }
    }
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[1], 1,
                        "Each row of Input(X) contains a real value, "
                        "so the 2nd dimension of Input(X) must be 1.");
    }
Y
yangyaming 已提交
55

56 57 58
    ctx->SetOutputDim("Residual", x_dims);
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->ShareLoD("X", "Out");
Y
yangyaming 已提交
59 60 61 62 63 64
  }
};

template <typename AttrType>
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
65
  void Make() override {
66 67 68 69 70 71
    AddInput("X",
             "The input value of huber loss op."
             "X is a 2-D tensor with shape [batch_size, 1].");
    AddInput("Y",
             "The target value of huber loss op."
             "Y is a 2-D tensor with shape [batch_size, 1].");
72
    AddOutput("Residual",
73
              "Intermediate tensor to cache residual value between Y and X."
74
              "The shape is same as Input(X) and will be reused in backward.")
Y
yangyaming 已提交
75
        .AsIntermediate();
76
    AddOutput("Out",
K
kexinzhao 已提交
77 78
              "The output tensor with shape [batch_size, 1] "
              "which represents the huber loss.");
Y
yangyaming 已提交
79 80
    AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
    AddComment(R"DOC(
K
kexinzhao 已提交
81 82
HuberLoss Operator.

83 84 85 86
Huber loss is a loss function used in robust regression. We define X as the
input value and Y as the target value. Huber loss can evaluate the fitness of
X to Y. Different from MSE loss, Huber loss is more robust for outliers. The
shape of X and Y are [batch_size, 1]. The equation is:
Y
yangyaming 已提交
87

88
$$
Y
yangyaming 已提交
89
Out_{\delta}(X, Y)_i =
90
\begin{cases}
Y
yangyaming 已提交
91 92 93
0.5 * (Y_i - X_i)^2,
\quad |Y_i - X_i| \leq \delta \\
\delta * (|Y_i - X_i| - 0.5 * \delta),
94
\quad otherwise
95
\end{cases}
96
$$
Y
yangyaming 已提交
97

Y
yangyaming 已提交
98 99 100
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
element of Out, X and Y.

Y
yangyaming 已提交
101 102 103 104 105 106 107 108
)DOC");
  }
};

class HuberLossGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

109 110 111 112 113 114 115 116 117
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");

    auto residual_dims = ctx->GetInputDim("Residual");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
118
      ctx->SetOutputDim(x_grad_name, residual_dims);
119 120
    }
    if (ctx->HasOutput(y_grad_name)) {
121
      ctx->SetOutputDim(y_grad_name, residual_dims);
122
    }
Y
yangyaming 已提交
123 124 125
  }
};

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
class HuberLossGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("huber_loss_grad");
    op->SetInput("Residual", Output("Residual"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

Y
yangyaming 已提交
143 144 145 146
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
147
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
148
                  ops::HuberLossGradOpDescMaker);
149
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
Q
QI JUN 已提交
150
REGISTER_OP_CPU_KERNEL(
151 152
    huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
Y
yangyaming 已提交
153 154
REGISTER_OP_CPU_KERNEL(
    huber_loss_grad,
155 156
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);