op_compat.yaml 21.0 KB
Newer Older
1
- op : abs
2 3 4 5
  backward : abs_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]

6 7 8 9 10
- op : acosh
  backward : acosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

11 12 13 14 15 16
- op : add (elementwise_add)
  backward : add_grad (elementwise_add_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

17
- op : addmm
18 19 20 21
  backward : addmm_grad
  extra :
    attrs : [bool use_mkldnn = false]

22
- op : affine_grid
23 24 25 26
  backward : affine_grid_grad
  extra :
    attrs : [bool use_cudnn = true]

27
- op : angle
28 29 30
  backward : angle_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false]
31

32
- op : asinh
33 34 35 36
  backward : asinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

37
- op : atan2
38
  inputs :
39
    {x : X1, y : X2}
40 41 42
  outputs :
    out : Out

43
- op : atanh
44 45 46 47
  backward : atanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

48
- op : batch_norm
49 50 51 52
  backward : batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

53
- op : bernoulli
54 55 56 57 58
  inputs :
    x : X
  outputs :
    out : Out

59
- op : bicubic_interp (bicubic_interp_v2)
60 61 62 63
  backward : bicubic_interp_grad (bicubic_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

64
- op : bilinear_interp (bilinear_interp_v2)
65 66 67 68
  backward : bilinear_interp_grad (bilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

69
- op : ceil
70 71 72 73
  backward : ceil_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

74
- op : cholesky
75 76 77 78 79
  inputs :
    x : X
  outputs :
    out : Out

80
- op : cholesky_solve
81 82 83 84 85
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

86
- op : clip
87 88 89 90
  backward : clip_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

91
- op : concat
92 93 94 95
  backward : concat_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32"]

96 97 98 99 100
- op : conditional_block
  backward : conditional_block_grad
  extra :
    attrs : ['str[] skip_eager_deletion_vars = {}']

101
- op : conv2d
102
  backward : conv2d_grad
103
  extra :
104
    attrs : [bool is_test = false, bool use_cudnn = true, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
105
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
106
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
107 108
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
109
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]
110

111
- op : conv2d_fusion
F
Feiyu Chan 已提交
112
  extra :
113
    attrs : [bool is_test = false, bool use_cudnn = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
F
Feiyu Chan 已提交
114
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
115
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
F
Feiyu Chan 已提交
116 117
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
118 119
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

120
- op : conv2d_transpose
121 122 123 124 125 126 127
  backward : conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]

128
- op : conv3d
129 130 131 132 133 134 135
  backward : conv3d_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             bool use_addto = false, bool fuse_residual_connection = false, bool force_fp32_output = false,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

136
- op : conv3d_transpose
137 138 139
  backward : conv3d_transpose_grad
  extra :
    attrs : [bool use_cudnn = true, bool use_mkldnn = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
F
Feiyu Chan 已提交
140

141
- op : cos
142 143 144 145
  backward : cos_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

146
- op : cosh
147 148 149 150
  backward : cosh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

151
- op : cross
152 153
  inputs :
    {x : X, y : Y}
154 155 156 157 158
  attrs :
    axis : dim
  outputs :
    out : Out

159
- op : data_norm
160 161 162 163
  backward : data_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

164
- op : depthwise_conv2d
165 166
  backward : depthwise_conv2d_grad
  extra :
167
    attrs : [bool is_test = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false,
168 169 170 171
             bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false,
             bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f,
             float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false,
172 173
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false]

174
- op : depthwise_conv2d_transpose
175 176 177 178 179 180
  backward : depthwise_conv2d_transpose_grad
  extra :
    attrs : [bool is_test = false, bool use_cudnn = false, bool use_mkldnn = false, bool force_fp32_output = false,
             str mkldnn_data_type = "float32", bool fuse_relu = false,
             str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f,
             int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()]
181

182 183 184 185
- op : dequantize_linear
  extra :
    attrs : [float moving_rate = 0.9]

186
- op : diag (diag_v2)
187
  backward : diag_grad (diag_v2_grad)
188 189 190 191 192
  inputs :
    x : X
  outputs :
    out : Out

193
- op : diagonal
194 195 196 197 198
  inputs :
    x : Input
  outputs :
    out : Out

199
- op : digamma
200 201 202 203 204
  inputs :
    x : X
  outputs :
    out : Out

205
- op : dist
206 207 208 209 210
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

211 212 213 214
- op : distributed_push_sparse
  extra :
    attrs : ['int[] slots = {}']

215 216 217 218 219 220
- op : divide (elementwise_div)
  backward : divide_grad (elementwise_div)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

221
- op : dot
222 223 224 225 226
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

227
- op : dropout
228 229 230 231
  backward : dropout_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

232
- op : dropout_nd
233 234 235 236
  backward : dropout_nd_grad
  extra :
    attrs : [bool fix_seed = false, int seed = 0]

237 238 239 240 241 242
- op : elementwise_pow
  backward : elementwise_pow_grad
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

243
- op : elu
244 245 246 247
  backward : elu_grad
  extra :
    attrs : [bool use_mkldnn = false]

248 249 250 251 252 253 254
- op : embedding (lookup_table_v2)
  backward : embedding_grad (lookup_table_v2_grad)
  extra :
    attrs : [bool is_sparse = false, bool is_distributed = false, bool remote_prefetch = false,
             int trainer_id = 0, int slot = 0, 'int64_t[] height_sections = {}', 'str[] epmap = {}',
             'str[] table_names = {}']

255
- op : erf
256 257 258 259 260
  inputs :
    x : X
  outputs :
    out : Out

261
- op : erfinv
262 263 264 265 266
  inputs :
    x : X
  outputs :
    out : Out

267
- op : exp
268 269 270 271
  backward : exp_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

272 273 274 275 276
- op : expand (expand_v2)
  backward : expand_grad (expand_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

277
- op : expm1
278 279 280 281
  backward : expm1_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
- op : fake_channel_wise_quantize_abs_max
  extra :
    attrs : [int round_type = 1]

- op : fake_channel_wise_quantize_dequantize_abs_max
  extra :
    attrs : [int round_type = 1]

- op : fake_quantize_abs_max
  extra :
    attrs : [int round_type = 1]

- op : fake_quantize_dequantize_abs_max
  extra :
    attrs : [int round_type = 1]

- op : fake_quantize_dequantize_moving_average_abs_max
  extra :
    attrs : [int round_type = 1]

- op : fake_quantize_moving_average_abs_max
  extra :
    attrs : [int round_type = 1]

- op : fake_quantize_range_abs_max
  extra :
    attrs : [int round_type = 1]

310
- op : fft_c2c
311 312 313
  inputs: {x: X}
  outputs: {out: Out}

314
- op : fft_c2r
315 316 317
  inputs: {x: X}
  outputs: {out: Out}

318
- op : fft_r2c
319 320 321
  inputs: {x: X}
  outputs: {out: Out}

322 323 324 325 326
- op : floor
  backward : floor_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
- op : floor_divide (elementwise_floordiv)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmax (elementwise_fmax)
  backward : fmax_grad (elementwise_fmax_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : fmin (elementwise_fmin)
  backward : fmin_grad (elementwise_fmin_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

344
- op : frobenius_norm
345 346 347 348
  backward : frobenius_norm_grad
  extra :
    attrs : [bool use_mkldnn = false]

349 350 351 352 353 354 355 356 357
- op : full (fill_constant)
  extra :
    attrs : [bool use_mkldnn = false]

- op : gather
  backward : gather_grad
  extra :
    attrs : [bool overwrite = true]

358
- op : gelu
359 360 361 362
  backward : gelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool use_cudnn = false]

363 364 365 366 367
- op : grad_add
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

368
- op : grid_sampler
369 370 371 372
  backward : grid_sampler_grad
  extra :
    attrs : [bool use_cudnn = true]

373
- op : gru
374 375 376 377
  backward : gru_grad
  extra :
    attrs : [bool is_test = false]

378 379 380 381 382
- op : hard_swish
  backward : hard_swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

383 384 385 386 387 388
- op : heaviside (elementwise_heaviside)
  backward : heaviside_grad (elementwise_heaviside_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

389
- op : inplace_abn
390 391 392 393
  backward : inplace_abn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

394
- op : layer_norm
395 396 397 398
  backward : layer_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

399
- op : leaky_relu
400 401 402 403
  backward : leaky_relu_grad
  extra :
    attrs : [bool use_mkldnn = false]

404
- op : lgamma
405 406 407 408 409
  inputs :
    x : X
  outputs :
    out : Out

410
- op : linear_interp (linear_interp_v2)
411 412 413 414
  backward : linear_interp_grad (linear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

415
- op : log
416 417 418 419
  backward : log_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

420
- op : log10
421 422 423 424
  backward : log10_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

425
- op : log1p
426 427 428 429
  backward : log1p_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

430
- op : log2
431 432 433 434
  backward : log2_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

435
- op : log_softmax
436 437 438 439
  backward : log_softmax_grad
  extra :
    attrs : [bool use_mkldnn = false]

440
- op : logsigmoid
441 442 443 444
  backward : logsigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

445
- op : lrn
446 447 448 449
  backward : lrn_grad
  extra :
    attrs : [bool use_mkldnn = false, bool is_test = false]

450
- op : matmul (matmul_v2)
451 452 453 454
  backward : matmul_grad (matmul_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false, 'int[] fused_reshape_Out = {}', 'int[] fused_transpose_Out = {}',
             str mkldnn_data_type = "float32", 'int[] fused_reshape_X = {}', 'int[] fused_reshape_Y = {}',
455
             'int[] fused_transpose_X = {}', 'int[] fused_transpose_Y = {}']
456

457 458 459 460 461 462
- op : matmul_with_flatten (mul)
  backward : matmul_with_flatten_grad (mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, float scale_x = 1.0f, 'float[] scale_y = {1.0f}',
             float scale_out = 1.0f, bool force_fp32_output = false]

463 464 465 466 467 468 469 470 471 472 473 474
- op : maximum (elementwise_max)
  backward : maximum_grad (elementwise_max_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

- op : maximum (elementwise_min)
  backward : maximum_grad (elementwise_min_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

475 476 477 478 479
- op : mish
  backward : mish_grad
  extra :
    attrs : [bool use_mkldnn = false]

480 481 482 483 484 485
- op : multiply (elementwise_mul)
  backward : multiply_grad (elementwise_mul_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

486
- op : mv
487 488 489 490 491
  inputs :
    {x : X, vec : Vec}
  outputs :
    out : Out

492 493 494 495 496 497
- op : nce
  backward : nce_grad
  extra :
    attrs : [int trainer_id = 0, 'int64_t[] height_sections = {}', 'str[] epmap = {}',
             'str[] table_names = {}', 'int[] custom_neg_classes = {}']

498
- op : nearest_interp (nearest_interp_v2)
499 500 501 502
  backward : nearest_interp_grad (nearest_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

503
- op : pad2d
504 505 506 507
  backward : pad2d_grad
  extra :
    attrs : [bool use_mkldnn = false]

508
- op : pad3d
509 510 511 512
  backward : pad3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

513
- op : partial_sum
514 515 516 517
  backward : partial_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

518
- op : poisson
519 520 521 522 523
  inputs :
    x : X
  outputs :
    out : Out

524 525 526 527 528 529 530 531 532 533 534
- op : pool2d
  backward : pool2d_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_quantizer = false,
              str mkldnn_data_type = "float32", bool is_test = false]

- op : pool3d
  backward : pool3d_grad
  extra :
    attrs : [bool use_mkldnn = false]

535
- op : prelu
536 537 538 539
  backward : prelu_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]

540 541 542 543
- op : quantize_linear
  extra :
    attrs : [float moving_rate = 0.9]

544
- op : reciprocal
545 546 547 548
  backward : reciprocal_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

549
- op : reduce_all
550 551 552
  extra :
    attrs : [bool use_mkldnn = false]

553
- op : reduce_amax
554 555 556 557
  backward : reduce_amax_grad
  extra :
    attrs : [bool use_mkldnn = false]

558
- op : reduce_amin
559 560 561 562
  backward : reduce_amin_grad
  extra :
    attrs : [bool use_mkldnn = false]

563
- op : reduce_any
564 565 566
  extra :
    attrs : [bool use_mkldnn = false]

567
- op : reduce_max
568 569 570 571
  backward : reduce_max_grad
  extra :
    attrs : [bool use_mkldnn = false]

572
- op : reduce_mean
573 574 575 576
  backward : reduce_mean_grad
  extra :
    attrs : [bool use_mkldnn = false]

577
- op : reduce_min
578 579 580 581
  backward : reduce_min_grad
  extra :
    attrs : [bool use_mkldnn = false]

582
- op : reduce_prod
583 584 585 586
  backward : reduce_prod_grad
  extra :
    attrs : [bool use_mkldnn = false]

587
- op : reduce_sum
588 589 590 591
  backward : reduce_sum_grad
  extra :
    attrs : [bool use_mkldnn = false]

592
- op : relu
593 594 595 596
  backward : relu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

597
- op : relu6
598 599 600 601
  backward : relu6_grad
  extra :
    attrs : [bool use_mkldnn = false]

602 603 604 605 606
- op : remainder (elementwise_mod)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

607
- op : renorm
608 609 610 611
  backward : renorm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

612 613 614 615 616 617
- op : rnn
  backward : rnn_grad
  extra :
    attrs : [bool is_test = false]

- op : round
618
  backward : round_grad
619
  extra :
620 621
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

622
- op : rsqrt
623 624 625
  backward : rsqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
626

627 628 629 630
- op : scale
  extra :
    attrs : [bool use_mkldnn = false]

631
- op : seed
632 633 634
  extra :
    attrs : [bool deterministic = false, str rng_name = "", bool force_cpu = false]

635 636 637 638 639
- op : sequence_softmax
  backward : sequence_softmax_grad
  extra :
    attrs : [str data_format = "AnyLayout"]

640
- op : shape
641 642 643
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

644
- op : shuffle_channel
645 646 647 648
  backward : shuffle_channel_grad
  extra :
    attrs : [bool use_mkldnn = false]

649
- op : sigmoid
650 651 652 653
  backward : sigmoid_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

654
- op : silu
655 656 657 658
  backward : silu_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

659
- op : sin
660 661 662 663
  backward : sin_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

664
- op : sinh
665 666 667 668
  backward : sinh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

669
- op : slice
670 671 672 673
  backward : slice_grad
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

674
- op : softmax
675 676 677
  backward : softmax_grad
  extra :
    attrs : [bool use_cudnn = false, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false]
678

679
- op : softplus
680
  backward : softplus_grad
681
  extra :
682 683 684
    attrs : [bool use_mkldnn = false, bool use_cudnn = false, str fuse_activation_type = "", float fuse_activation_alpha = 0.0f,
             float fuse_activation_beta = 0.0f, float fuse_activation_scale = 1.0f]

685
- op : softsign
686 687 688
  backward : softsign_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]
689

690
- op : solve
691 692 693 694 695
  inputs :
    {x : X, y : Y}
  outputs :
    out : Out

696
- op : sqrt
697 698 699 700
  backward : sqrt_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

701
- op : square
702 703 704 705
  backward : square_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

706
- op : squeeze (squeeze2)
707 708 709 710
  backward : squeeze_grad (squeeze2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"]

711
- op : stack
712 713 714 715
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

716 717 718 719 720
- op : stack
  backward : stack_grad
  extra :
    attrs : [bool use_mkldnn = false]

721 722 723 724 725 726
- op : subtract (elementwise_sub)
  backward : subtract_grad (elementwise_sub_grad)
  extra :
    attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
             bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]

727
- op : swish
728 729 730 731
  backward : swish_grad
  extra :
    attrs : [bool use_mkldnn = false]

732
- op : sync_batch_norm
733 734 735 736
  backward : sync_batch_norm_grad
  extra :
    attrs : [bool use_mkldnn = false, bool fuse_with_relu = false]

737
- op : tan
738 739 740 741
  backward : tan_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

742
- op : tanh
743 744 745 746
  backward : tanh_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

747
- op : tanh_shrink
748 749 750 751
  backward : tanh_shrink_grad
  extra :
    attrs : [bool use_mkldnn = false, bool use_cudnn = false]

752
- op : trace
753 754 755 756
  inputs :
    x : Input
  outputs :
    out : Out
757

758 759 760 761 762 763
- op : transpose (transpose2)
  backward : transpose_grad (transpose2_grad)
  extra :
    attrs : [bool use_mkldnn = false, str data_format = "AnyLayout", bool use_quantizer = false,
              str mkldnn_data_type = "float32"]

764
- op : trilinear_interp (trilinear_interp_v2)
765 766 767 768
  backward : trilinear_interp_grad (trilinear_interp_v2_grad)
  extra :
    attrs : [bool use_mkldnn = false]

769
- op : trunc
770 771 772 773
  inputs :
    x : X
  outputs :
    out : Out
774

775 776
- op : while
  backward : while_grad
777
  extra :
778
    attrs : ['str[] skip_eager_deletion_vars = {}']