tensor_utils.cc 20.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pten/api/lib/utils/tensor_utils.h"
16

17
#include <utility>
18 19 20 21
#include <vector>

#include "paddle/pten/core/compat_utils.h"

22 23 24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace experimental {

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
    const paddle::framework::Tensor& src) {
36
  VLOG(3) << "MakePtenDenseTensor based Tensor.";
37 38
  pten::DenseTensorMeta meta{pten::TransToPtenDataType(src.type()),
                             src.dims(),
39
                             src.layout(),
40 41
                             src.offset()};
  auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
42 43 44 45 46 47
  return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                             std::move(meta));
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
    const paddle::framework::LoDTensor& src) {
48 49 50 51 52
  auto out =
      MakePtenDenseTensor(static_cast<const paddle::framework::Tensor&>(src));
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
53 54
}

55
std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
56
    const paddle::framework::Tensor& src, const pten::TensorArgDef& arg_def) {
57 58
  pten::DenseTensorMeta meta{
      arg_def.dtype, src.dims(), src.layout(), src.offset()};
59

60 61 62
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
    auto shared_storage = pten::make_intrusive<SharedStorage>(src.Holder());
63 64 65 66 67 68 69 70 71 72 73
    return std::make_unique<pten::DenseTensor>(std::move(shared_storage),
                                               std::move(meta));
  } else {
    return std::make_unique<pten::DenseTensor>(
        std::move(pten::make_intrusive<SharedStorage>(
            pten::TransToFluidPlace(arg_def.backend))),
        std::move(meta));
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
74
    const paddle::framework::LoDTensor& src,
75
    const pten::TensorArgDef& arg_def) {
76 77 78 79 80
  auto out = MakePtenDenseTensor(
      static_cast<const paddle::framework::Tensor&>(src), arg_def);
  SetLoD(&(pten::CompatibleDenseTensorUtils::GetMutableMeta(out.get())->lod),
         src.lod());
  return std::move(out);
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
pten::Scalar MakePtenScalar(const paddle::framework::LoDTensor& src) {
  PADDLE_ENFORCE_EQ(src.numel(),
                    1,
                    paddle::platform::errors::InvalidArgument(
                        "The Scalar only supports Tensor with 1 element, "
                        "but now Tensor has %d element.",
                        src.numel()));
  switch (src.type()) {
    case paddle::framework::proto::VarType::FP32:
      return {src.template data<float>()[0]};
    case paddle::framework::proto::VarType::FP64:
      return {src.template data<double>()[0]};
    case paddle::framework::proto::VarType::FP16:
      return {src.template data<float16>()[0]};
    case paddle::framework::proto::VarType::BF16:
      return {src.template data<bfloat16>()[0]};
    case paddle::framework::proto::VarType::INT32:
      return {src.template data<int32_t>()[0]};
    case paddle::framework::proto::VarType::INT64:
      return {src.template data<int64_t>()[0]};
    case paddle::framework::proto::VarType::INT16:
      return {src.template data<int16_t>()[0]};
    case paddle::framework::proto::VarType::INT8:
      return {src.template data<int8_t>()[0]};
    case paddle::framework::proto::VarType::UINT8:
      return {src.template data<uint8_t>()[0]};
    case paddle::framework::proto::VarType::BOOL:
      return {src.template data<bool>()[0]};
    case paddle::framework::proto::VarType::COMPLEX64:
      return {src.template data<complex64>()[0]};
    case paddle::framework::proto::VarType::COMPLEX128:
      return {src.template data<complex128>()[0]};
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Data type error. Don't support casting a %d LoDTensor to Scalar.",
          src.type()));
  }
}

pten::Scalar MakePtenScalarFromVar(const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalar(tmp_tensor);
    } else {
      return MakePtenScalar(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArray(const paddle::framework::LoDTensor& src) {
  if (src.type() == paddle::framework::proto::VarType::INT64) {
    return {src.data<int64_t>(), src.numel()};
  } else if (src.type() == paddle::framework::proto::VarType::INT32) {
    return {src.data<int32_t>(), src.numel()};
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to ScalarArray, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        src.type()));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVar(
    const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalarArray(tmp_tensor);
    } else {
      return MakePtenScalarArray(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to ScalarArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return pten::ScalarArray();
  }
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);

  paddle::framework::proto::VarType::Type data_type;
  auto* first_var = variable_list.front();
  if (first_var->IsType<framework::LoDTensor>()) {
    const auto& tensor = first_var->Get<framework::LoDTensor>();
    data_type = tensor.type();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to VectorTensor when call pt "
        "kernel.",
        framework::ToTypeName(first_var->Type())));
  }

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  if (data_type == paddle::framework::proto::VarType::INT64) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }

  } else if (data_type == paddle::framework::proto::VarType::INT32) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to VectorTensor, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        data_type));
  }

  return {vector_data};
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    const framework::Variable& variable, const pten::TensorArgDef& arg_def) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);

  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor);
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
      TensorCopySync(tensor.value(), expected_place, &tmp_tensor);
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
      return MakePtenDenseTensor(tmp_tensor);
    } else {
      return MakePtenDenseTensor(tensor.value());
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
  return {};
}

std::unique_ptr<pten::TensorBase> MakePtenTensorBaseFromVar(
    framework::Variable* variable, const pten::TensorArgDef& arg_def) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
284
    return MakePtenDenseTensor(*tensor, arg_def);
285 286 287 288
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
289
    return MakePtenDenseTensor(tensor->value(), arg_def);
290 291 292 293 294 295 296 297 298
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
  return {};
}

void MovesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
299 300 301 302 303 304 305 306
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move storage."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move storage."));
307
  dst->Resize(src->dims());
308
  dst->set_type(pten::TransToProtoVarType(src->dtype()));
309
  auto storage = src->release();
310
  std::shared_ptr<pten::Allocation> holder(
311
      new TensorStorage(std::move(storage)));
312
  dst->ResetHolderWithType(holder, pten::TransToProtoVarType(src->dtype()));
313
  dst->set_offset(src->meta().offset);
314 315 316 317
}

void MovesStorage(pten::DenseTensor* src, paddle::framework::LoDTensor* dst) {
  MovesStorage(src, static_cast<paddle::framework::Tensor*>(dst));
318
  SetLoD(dst->mutable_lod(), src->lod());
319 320
}

321
void SharesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
322 323 324 325 326 327 328 329 330 331 332 333 334
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move allocation."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move allocation."));
  dst->Resize(src->dims());
  auto* storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(src));
  dst->ResetHolderWithType(storage->GetAllocation(),
                           pten::TransToProtoVarType(src->dtype()));
335
  dst->set_offset(src->meta().offset);
336 337
}

338 339
void SharesStorage(pten::DenseTensor* src, paddle::framework::LoDTensor* dst) {
  SharesStorage(src, static_cast<paddle::framework::Tensor*>(dst));
340 341 342
  SetLoD(dst->mutable_lod(), src->lod());
}

343 344
void ReMakePtenDenseTensor(const paddle::framework::Tensor& src,
                           pten::DenseTensor* dst) {
345
  VLOG(3) << "ReMakePtenDenseTensor based Tensor.";
346 347
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
348
  meta->dtype = pten::TransToPtenDataType(src.type());
349
  meta->layout = src.layout();
350
  meta->offset = src.offset();
351

352 353 354 355 356 357
  auto* shared_storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(dst));
  PADDLE_ENFORCE_NOT_NULL(
      shared_storage,
      platform::errors::NotFound(
          "Target DenseTensor's shared storage is nullptr."));
358

359 360 361 362 363
  PADDLE_ENFORCE_EQ(src.IsInitialized(),
                    true,
                    paddle::platform::errors::InvalidArgument(
                        "Source Tensor is not initialized."));
  shared_storage->ResetAllocation(src.Holder());
364 365
}

366 367 368
void ReMakePtenDenseTensor(const paddle::framework::LoDTensor& src,
                           pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
369 370 371
  SetLoD(&meta->lod, src.lod());
  ReMakePtenDenseTensor(static_cast<const paddle::framework::Tensor&>(src),
                        dst);
372 373
}

374 375 376 377
void ReMakePtenDenseTensorByArgDef(const paddle::framework::Tensor& src,
                                   const pten::TensorArgDef& arg_def,
                                   pten::DenseTensor* dst) {
  VLOG(3) << "ReMakePtenDenseTensor based Tensor and TensorArgDef.";
378 379
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dims = src.dims();
380
  meta->dtype = arg_def.dtype;
381
  meta->layout = src.layout();
382
  meta->offset = src.offset();
383 384 385 386 387 388 389 390

  auto* shared_storage = static_cast<SharedStorage*>(
      pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(dst));
  PADDLE_ENFORCE_NOT_NULL(
      shared_storage,
      platform::errors::NotFound(
          "Target DenseTensor's shared storage is nullptr."));

391 392
  if (src.IsInitialized() &&
      src.place() == pten::TransToFluidPlace(arg_def.backend)) {
393
    shared_storage->ResetAllocation(src.Holder());
394 395 396 397
  } else {
    shared_storage->ResetAllocationPlace(
        pten::TransToFluidPlace(arg_def.backend));
  }
398 399
}

400 401 402 403 404 405 406 407 408
void ReMakePtenDenseTensorByArgDef(const paddle::framework::LoDTensor& src,
                                   const pten::TensorArgDef& arg_def,
                                   pten::DenseTensor* dst) {
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  SetLoD(&meta->lod, src.lod());
  ReMakePtenDenseTensorByArgDef(
      static_cast<const paddle::framework::Tensor&>(src), arg_def, dst);
}

409 410 411 412 413 414
void ReMakePtenDenseTensorFromVar(const framework::Variable& variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  auto expected_place = pten::TransToFluidPlace(arg_def.backend);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
Y
YuanRisheng 已提交
415 416 417 418 419 420
    // check input dtype before ReMakePtenDenseTensor
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
421 422 423
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
424
      ReMakePtenDenseTensorByArgDef(tmp_tensor, arg_def, dst);
425
    } else {
426
      ReMakePtenDenseTensorByArgDef(tensor, arg_def, dst);
427 428 429 430 431
    }
  } else if (variable.IsType<framework::SelectedRows>()) {
    // TODO(chenweihang): now we don't deal with row and height
    // by xiaowei's advice
    const auto& tensor = variable.Get<framework::SelectedRows>();
Y
YuanRisheng 已提交
432 433 434 435 436
    PADDLE_ENFORCE(
        (arg_def.dtype == pten::TransToPtenDataType(tensor.value().type())),
        paddle::platform::errors::InvalidArgument(
            "The type of input data is diffrent from the type of the "
            "argument's definition in kernel."));
437 438 439 440
    if (!platform::is_same_place(tensor.value().place(), expected_place)) {
      framework::Tensor tmp_tensor;
      TensorCopySync(tensor.value(), expected_place, &tmp_tensor);
      // TODO(chenweihang): adapt SelectedRows by xiaowei's design
441
      ReMakePtenDenseTensorByArgDef(tmp_tensor, arg_def, dst);
442
    } else {
443
      ReMakePtenDenseTensorByArgDef(tensor.value(), arg_def, dst);
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

void ReMakePtenDenseTensorFromVar(framework::Variable* variable,
                                  const pten::TensorArgDef& arg_def,
                                  pten::DenseTensor* dst) {
  // mutable_data before run kernel, to avoid share output form
  // KernelContext to original tensor
  if (variable->template IsType<framework::LoDTensor>()) {
    auto* tensor = variable->template GetMutable<framework::LoDTensor>();
459
    ReMakePtenDenseTensorByArgDef(*tensor, arg_def, dst);
460 461 462 463
  } else if (variable->template IsType<framework::SelectedRows>()) {
    auto* tensor = variable->template GetMutable<framework::SelectedRows>();
    // TODO(chenweihang): adapt SelectedRows by xiaowei's design,
    // here the row and height will lost in output!
464
    ReMakePtenDenseTensorByArgDef(tensor->value(), arg_def, dst);
465 466 467 468 469 470 471
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared output `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static bool IsSameAllocation(const std::shared_ptr<memory::Allocation>& a,
                             const std::shared_ptr<memory::Allocation>& b) {
  return a->ptr() == b->ptr() && a->size() == b->size() &&
         platform::is_same_place(a->place(), b->place());
}

void MakeVariableFromPtenTensor(pten::DenseTensor* src,
                                framework::Variable* variable) {
  if (variable->IsType<framework::LoDTensor>()) {
    auto* tensor = variable->GetMutable<framework::LoDTensor>();

    auto dtype = pten::TransToProtoVarType(src->dtype());
    tensor->Resize(src->dims());
    SetLoD(tensor->mutable_lod(), src->lod());

    // here dynamic_cast is slow
    auto* storage = static_cast<SharedStorage*>(
        pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(src));

    if (!tensor->IsInitialized() ||
        (tensor->IsInitialized() &&
         !IsSameAllocation(tensor->Holder(), storage->GetAllocation()))) {
      tensor->ResetHolderWithType(std::move(storage->GetAllocation()), dtype);
    } else {
      // Even the pten tensor and Variable have the same Alloctation (both have
      // the same pointer address, same size and same place)
      // but there is possible that they do not have the same data_type.
      // so, here we set the variable's type with the pten tensor dtype.
      tensor->set_type(dtype);
    }

  } else if (variable->IsType<framework::SelectedRows>()) {
    auto* tensor = variable->GetMutable<framework::SelectedRows>();
    auto dtype = pten::TransToProtoVarType(src->dtype());

    if (!tensor->value().IsInitialized()) {
      auto storage = dynamic_cast<SharedStorage*>(
          pten::CompatibleDenseTensorUtils::UnsafeGetMutableStorage(src));
      tensor->mutable_value()->ResetHolderWithType(
          std::move(storage->GetAllocation()), dtype);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

520 521
}  // namespace experimental
}  // namespace paddle