argsort_kernel.cc 4.8 KB
Newer Older
L
Linjie Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/argsort_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/transpose_kernel.h"

namespace phi {

template <typename T, typename Type>
static void FullSort(Type input_height,
                     Type input_width,
                     int input_dim,
                     const DenseTensor* input,
                     T* t_out,
                     Type* t_indices,
                     bool descending) {
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
  for (Type i = 0; i < input_height; ++i) {
    std::vector<std::pair<T, Type>> col_vec;
    col_vec.reserve(input_width);
    if (input_dim == 1) {
      auto e_input = EigenVector<T>::Flatten(*input);
      for (Type j = 0; j < input_width; ++j) {
        col_vec.push_back(std::pair<T, Type>(e_input(j), j));
      }
    } else {
      auto e_input = EigenMatrix<T>::Reshape(*input, input_dim - 1);
      for (Type j = 0; j < input_width; ++j) {
        col_vec.push_back(std::pair<T, Type>(e_input(i, j), j));
      }
    }
    std::sort(col_vec.begin(),
              col_vec.end(),
              [&](const std::pair<T, Type>& l, const std::pair<T, Type>& r) {
                if (descending)
                  return l.first > r.first;
                else
                  return l.first < r.first;
              });

    for (Type j = 0; j < input_width; ++j) {
      t_out[i * input_width + j] = col_vec[j].first;
      t_indices[i * input_width + j] = col_vec[j].second;
    }
  }
}

template <typename T, typename Context>
void ArgsortKernel(const Context& dev_ctx,
                   const DenseTensor& input,
                   int axis,
                   bool descending,
                   DenseTensor* output,
                   DenseTensor* indices) {
  auto in_dims = input.dims();
  axis = (axis < 0) ? (in_dims.size() + axis) : axis;
  T* out_data = dev_ctx.template Alloc<T>(output);

  // Do full sort
  if (axis == -1 || axis + 1 == in_dims.size()) {
    const int64_t input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t input_width = in_dims[in_dims.size() - 1];
    int64_t* ids_data = dev_ctx.template Alloc<int64_t>(indices);
    FullSort<T, int64_t>(input_height,
                         input_width,
                         in_dims.size(),
                         &input,
                         out_data,
                         ids_data,
                         descending);
  } else {
    // If not full sort do transpose
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.push_back(i);
    }
    trans.push_back(in_dims.size() - 1);
    for (int i = axis + 1; i < in_dims.size() - 1; i++) {
      trans.push_back(i);
    }
    trans.push_back(axis);
    phi::DDim trans_dims(in_dims);
    for (size_t i = 0; i < trans.size(); i++) {
      trans_dims[i] = in_dims[trans[i]];
    }

    DenseTensor trans_inp;
    trans_inp.Resize(trans_dims);
    dev_ctx.template Alloc<T>(&trans_inp);
    // Do transpose
    TransposeKernel<T, Context>(dev_ctx, input, trans, &trans_inp);

    const int64_t input_height =
        phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
    const int64_t input_width = trans_dims[trans_dims.size() - 1];

    DenseTensor tmp_out;
    tmp_out.Resize(trans_dims);
    T* t_out = dev_ctx.template Alloc<T>(&tmp_out);

    DenseTensor tmp_indices;
    tmp_indices.Resize(trans_dims);
    auto* t_ind = dev_ctx.template Alloc<int64_t>(&tmp_indices);

    FullSort<T, int64_t>(input_height,
                         input_width,
                         in_dims.size(),
                         &trans_inp,
                         t_out,
                         t_ind,
                         descending);

    dev_ctx.template Alloc<int64_t>(indices);
    TransposeKernel<int64_t, Context>(dev_ctx, tmp_indices, trans, indices);
    // transpose back
    TransposeKernel<T, Context>(dev_ctx, tmp_out, trans, output);
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    argsort, CPU, ALL_LAYOUT, phi::ArgsortKernel, float, double, int, int64_t) {
}