benchmark.cc 19.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/framework/tensor.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
23
#include "paddle/fluid/platform/device_tracer.h"
T
tensor-tang 已提交
24 25
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
T
tensor-tang 已提交
26
#include "paddle/fluid/platform/variant.h"  // for UNUSED
T
tensor-tang 已提交
27 28 29 30

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
T
tensor-tang 已提交
58
  static auto inserted_##name##_##dtype##_##place##_ UNUSED =                  \
59 60 61 62 63 64 65 66 67 68 69 70 71
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
72 73 74

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
75 76
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

91
template <typename KernelTuple, typename... Args>
T
tensor-tang 已提交
92 93
struct BenchFunc {
  // return this function avg time
T
tensor-tang 已提交
94
  // TODO(TJ): clear cache every time
95
  double operator()(const typename KernelTuple::func_type tgt, Args... args) {
T
tensor-tang 已提交
96 97 98
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
99
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
100 101 102
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
103
    auto end = paddle::platform::PosixInNsec() * 1e-3;
104
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
105 106 107 108 109
  }
};

namespace jit = paddle::operators::jit;

110 111 112
template <typename KernelTuple, typename PlaceType, typename... Args>
void BenchAllImpls(const typename KernelTuple::attr_type& attr, Args... args) {
  BenchFunc<KernelTuple, Args...> benchmark;
T
tensor-tang 已提交
113 114
  std::vector<std::pair<std::string, double>> infos;
  // test refer
115
  auto refer = jit::GetRefer<KernelTuple>();
T
tensor-tang 已提交
116 117 118 119 120 121
  if (!refer) {
    LOG(FATAL) << "Refer can not be empty!";
  }
  infos.push_back(std::make_pair("Refer", benchmark(refer, args...)));

  // test jitcode
122
  auto jitcode = jit::GetJitCode<KernelTuple, PlaceType>(attr);
T
tensor-tang 已提交
123 124 125 126
  if (jitcode) {
    infos.push_back(std::make_pair("JitCode", benchmark(jitcode, args...)));
  }
  // test all impls in more
127
  jit::KernelKey kkey(KernelTuple::kernel_type, PlaceType());
T
tensor-tang 已提交
128 129 130 131 132
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
133
      auto i = dynamic_cast<const jit::KernelMore<KernelTuple>*>(impl.get());
T
tensor-tang 已提交
134 135
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
136 137
        infos.push_back(
            std::make_pair(i->ImplType(), benchmark(more, args...)));
T
tensor-tang 已提交
138 139
      }
    }
T
tensor-tang 已提交
140
  }
T
tensor-tang 已提交
141
  // Test result from Get function
142
  auto tgt = jit::KernelFuncs<KernelTuple, PlaceType>::Cache().At(attr);
T
tensor-tang 已提交
143 144
  if (!tgt) {
    LOG(FATAL) << "Target can not be empty!";
T
tensor-tang 已提交
145
  }
T
tensor-tang 已提交
146 147 148 149
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
150 151
  loginfos << "Kernel Type " << jit::to_string(KernelTuple::kernel_type) << ": "
           << attr << ": ";
T
tensor-tang 已提交
152 153 154 155
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
156 157
}

T
tensor-tang 已提交
158 159
using Tensor = paddle::framework::Tensor;

160 161 162
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYZN() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
163
  for (int d : TestSizes()) {
T
tensor-tang 已提交
164 165 166 167 168 169 170 171 172
    Tensor x, y, z;
    x.Resize({d});
    y.Resize({d});
    z.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    T* z_data = z.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
    RandomVec<T>(d, y_data);
173 174
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y.data<T>(), z_data,
                                          d);
T
tensor-tang 已提交
175
    // test inplace
176
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), z_data, z_data, d);
T
tensor-tang 已提交
177 178
  }
}
179

180 181 182
template <typename KernelTuple, typename PlaceType>
void BenchKernelAXYN() {
  using T = typename KernelTuple::data_type;
183 184
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
T
tensor-tang 已提交
185 186 187 188 189 190
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
191
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), y_data, d);
T
tensor-tang 已提交
192
    // test inplace
193
    BenchAllImpls<KernelTuple, PlaceType>(d, &a, x.data<T>(), x_data, d);
194 195 196
  }
}

197 198 199
template <typename KernelTuple, typename PlaceType>
void BenchKernelXRN() {
  using T = typename KernelTuple::data_type;
200 201 202 203
  for (int d : TestSizes()) {
    Tensor x;
    RandomVec<T>(d, x.mutable_data<T>({d}, PlaceType()));
    T res;
204
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), &res, d);
205 206 207
  }
}

208 209 210
template <typename KernelTuple, typename PlaceType>
void BenchKernelXYN() {
  using T = typename KernelTuple::data_type;
211
  for (int d : TestSizes()) {
T
tensor-tang 已提交
212 213 214 215 216 217
    Tensor x, y;
    x.Resize({d});
    y.Resize({d});
    T* x_data = x.mutable_data<T>(PlaceType());
    T* y_data = y.mutable_data<T>(PlaceType());
    RandomVec<T>(d, x_data);
218
    BenchAllImpls<KernelTuple, PlaceType>(d, x.data<T>(), y_data, d);
219 220 221
  }
}

222 223 224
template <typename KernelTuple, typename PlaceType>
void BenchKernelLSTM() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
225 226
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
227
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
228
                                  use_peephole);
T
tensor-tang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
      Tensor x, ct_1, ct, ht, wp, checked;
      x.Resize({4 * d});
      ct_1.Resize({d});
      ct.Resize({d});
      ht.Resize({d});
      wp.Resize({3 * d});
      checked.Resize({2 * d});
      auto place = PlaceType();
      RandomVec<T>(x.numel(), x.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(wp.numel(), wp.mutable_data<T>(place), -2.f, 2.f);
      RandomVec<T>(ct_1.numel(), ct_1.mutable_data<T>(place), -2.f, 2.f);
      const T* ct_1_data = ct_1.data<T>();
      const T* wp_data = wp.data<T>();
      T* x_data = x.mutable_data<T>(place);
      T* checked_data = checked.mutable_data<T>(place);
      T* ct_data = ct.mutable_data<T>(place);
      T* ht_data = ht.mutable_data<T>(place);
T
tensor-tang 已提交
246 247 248 249 250 251 252 253 254
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
255
      BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
256 257 258 259
    }
  }
}

260 261 262
template <typename KernelTuple, typename PlaceType>
void BenchKernelGRU() {
  using T = typename KernelTuple::data_type;
263
  for (int d : TestSizes()) {
T
tensor-tang 已提交
264
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
T
tensor-tang 已提交
265 266 267 268 269 270 271 272 273 274
    auto place = PlaceType();
    Tensor x, ht_1, ht;
    x.Resize({3 * d});
    ht_1.Resize({d});
    ht.Resize({d});
    RandomVec<T>(3 * d, x.mutable_data<T>(place), -2.f, 2.f);
    RandomVec<T>(d, ht_1.mutable_data<T>(place), -2.f, 2.f);
    const T* ht_1_data = ht_1.data<T>();
    T* x_data = x.mutable_data<T>(place);
    T* ht_data = ht.mutable_data<T>(place);
275 276 277 278
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
279
    BenchAllImpls<KernelTuple, PlaceType>(attr, &step, &attr);
280 281 282
  }
}

283 284 285
template <typename KernelTuple, typename PlaceType>
void BenchKernelSeqPool() {
  using T = typename KernelTuple::data_type;
286 287
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
288
  for (auto type : pool_types) {
T
tensor-tang 已提交
289
    for (int w : TestSizes()) {
T
tensor-tang 已提交
290
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
291
      for (int h : TestSizes()) {
T
tensor-tang 已提交
292
        attr.h = h;
T
tensor-tang 已提交
293 294 295 296 297 298
        Tensor x, y;
        x.Resize({h * w});
        y.Resize({w});
        RandomVec<T>(h * w, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* x_data = x.data<T>();
        T* y_data = y.mutable_data<T>(PlaceType());
299
        BenchAllImpls<KernelTuple, PlaceType>(attr, x_data, y_data, &attr);
300 301 302 303 304
      }
    }
  }
}

305 306 307
template <typename KernelTuple, typename PlaceType>
void BenchKernelEmbSeqPool() {
  using T = typename KernelTuple::data_type;
308 309 310 311 312 313 314 315 316
  std::vector<jit::SeqPoolType> pool_types = {jit::SeqPoolType::kSum};
  int64_t tbl_h = 1e4;
  for (int tbl_w : {10, 16, 256}) {
    Tensor table;
    table.Resize({tbl_h, tbl_w});
    RandomVec<T>(tbl_h * tbl_w, table.mutable_data<T>(PlaceType()), -2.f, 2.f);
    const T* table_data = table.data<T>();
    for (auto type : pool_types) {
      for (int idx_w : {1, 2, 10, 16}) {
317
        for (int idx_h : {1, 2, 9, 13, 16}) {
318 319 320 321 322 323 324 325 326 327 328
          int64_t out_w = tbl_w * idx_w;
          jit::emb_seq_pool_attr_t attr(tbl_h, tbl_w, idx_h, idx_w, out_w,
                                        type);
          Tensor idx, out;
          idx.Resize({idx_h, idx_w});
          out.Resize({out_w});
          RandomVec<int64_t>(idx_h * idx_w,
                             idx.mutable_data<int64_t>(PlaceType()), 0,
                             tbl_h - 1);
          const int64_t* idx_data = idx.data<int64_t>();
          T* o_data = out.mutable_data<T>(PlaceType());
329 330
          BenchAllImpls<KernelTuple, PlaceType>(attr, table_data, idx_data,
                                                o_data, &attr);
331 332 333 334 335 336
        }
      }
    }
  }
}

337 338 339
template <typename KernelTuple, typename PlaceType>
void BenchKernelSgd() {
  using T = typename KernelTuple::data_type;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
  const T lr = 0.1;
  auto UnDuplicatedRandomVec = [](int n, const int64_t lower,
                                  const int64_t upper) -> std::vector<int64_t> {
    PADDLE_ENFORCE_LE(static_cast<size_t>(upper - lower), n - 1);
    PADDLE_ENFORCE_GT(n, 0);
    std::vector<int64_t> all, out;
    for (int i = 0; i < n; ++i) {
      all.push_back(i);
    }
    std::random_shuffle(all.begin(), all.end());
    out.insert(out.begin(), all.begin(), all.begin() + n);
    return out;
  };
  for (int param_h : {1, 1000}) {
    for (int grad_w : {1, 2, 8, 16, 30, 256}) {
      // only benchmark inplace
      Tensor param;
      param.Resize({param_h, grad_w});
      T* param_data = param.mutable_data<T>(PlaceType());
      RandomVec<T>(param_h * grad_w, param_data, -2.f, 2.f);
      for (int rows_size = 1; rows_size <= std::min(param_h, 10); ++rows_size) {
        Tensor grad;
        grad.Resize({rows_size, grad_w});
        std::vector<int64_t> rows =
            UnDuplicatedRandomVec(rows_size, 0, rows_size - 1);
        RandomVec<T>(rows_size * grad_w, grad.mutable_data<T>(PlaceType()),
                     -2.f, 2.f);
        const T* grad_data = grad.data<T>();
        const int64_t* rows_data = rows.data();
        jit::sgd_attr_t attr(param_h, grad_w, rows_size, grad_w, rows_size);
370 371
        BenchAllImpls<KernelTuple, PlaceType>(attr, &lr, param_data, grad_data,
                                              rows_data, param_data, &attr);
372 373 374 375 376
      }
    }
  }
}

377 378 379
template <typename KernelTuple, typename PlaceType>
void BenchKernelMatMul() {
  using T = typename KernelTuple::data_type;
T
tensor-tang 已提交
380
  for (int m : {1, 2, 3, 4}) {
381
    for (int n : TestSizes()) {
T
tensor-tang 已提交
382
      for (int k : TestSizes()) {
T
tensor-tang 已提交
383 384 385 386 387 388 389 390 391
        Tensor a, b, c;
        a.Resize({m * k});
        b.Resize({k * n});
        c.Resize({m * n});
        RandomVec<T>(m * k, a.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(k * n, b.mutable_data<T>(PlaceType()), -2.f, 2.f);
        const T* a_data = a.data<T>();
        const T* b_data = b.data<T>();
        T* c_data = c.mutable_data<T>(PlaceType());
392
        const jit::matmul_attr_t attr{m, n, k};
393 394
        BenchAllImpls<KernelTuple, PlaceType>(attr, a_data, b_data, c_data,
                                              &attr);
T
tensor-tang 已提交
395 396 397 398 399
      }
    }
  }
}

400 401 402
template <typename KernelTuple, typename PlaceType>
void BenchKernelSoftmax() {
  using T = typename KernelTuple::data_type;
403 404 405 406 407 408 409 410
  for (int bs : {1, 2, 10}) {
    for (int n : TestSizes()) {
      Tensor x, y;
      x.Resize({bs, n});
      y.Resize({bs, n});
      RandomVec<T>(bs * n, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      const T* x_data = x.data<T>();
      T* y_data = y.mutable_data<T>(PlaceType());
411
      BenchAllImpls<KernelTuple, PlaceType>(n, x_data, y_data, n, bs);
412 413 414 415
    }
  }
}

416 417 418
template <typename KernelTuple, typename PlaceType>
void BenchKernelLayerNorm() {
  using T = typename KernelTuple::data_type;
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
  const T epsilon = 9.99999975e-06;
  for (int n : {1, 2, 10}) {
    for (int x_dim_0 : {1, 9, 17, 50}) {
      int left = n * x_dim_0;
      for (int x_dim_1 : TestSizes()) {
        int right = x_dim_1;
        int sz = left * right;
        Tensor x, mean, var, scale, bias, out;
        x.Resize({n, x_dim_0, x_dim_1});
        out.Resize({n, x_dim_0, x_dim_1});
        mean.Resize({n, x_dim_0});
        var.Resize({n, x_dim_0});
        scale.Resize({x_dim_1});
        bias.Resize({x_dim_1});

        RandomVec<T>(sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, mean.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(left, var.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, scale.mutable_data<T>(PlaceType()), -2.f, 2.f);
        RandomVec<T>(right, bias.mutable_data<T>(PlaceType()), -2.f, 2.f);

        const T* scale_data = scale.data<T>();
        const T* bias_data = bias.data<T>();
        T* x_data = x.data<T>();
        T* mean_data = mean.data<T>();
        T* var_data = var.data<T>();
        T* out_data = out.mutable_data<T>(PlaceType());

447 448 449
        BenchAllImpls<KernelTuple, PlaceType>(right, x_data, out_data,
                                              mean_data, var_data, scale_data,
                                              bias_data, left, epsilon, right);
450 451 452 453 454
      }
    }
  }
}

455 456 457
template <typename KernelTuple, typename PlaceType>
void BenchKernelCRFDecoding() {
  using T = typename KernelTuple::data_type;
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  constexpr int state_trans_base_idx = 2;
  for (int seq_len : {1, 11, 17, 50}) {
    for (int tag_num : TestSizes()) {
      int x_sz = seq_len * tag_num;
      int w_sz = (tag_num + state_trans_base_idx) * tag_num;
      Tensor x, w, alpha, track;
      x.Resize({seq_len, tag_num});
      w.Resize({tag_num + state_trans_base_idx, tag_num});
      alpha.Resize({seq_len, tag_num});
      track.Resize({seq_len, tag_num});

      RandomVec<T>(x_sz, x.mutable_data<T>(PlaceType()), -2.f, 2.f);
      RandomVec<T>(w_sz, w.mutable_data<T>(PlaceType()), -2.f, 2.f);

      const T* x_data = x.data<T>();
      const T* w_data = w.data<T>();
      T* alpha_data = alpha.mutable_data<T>(PlaceType());
      int* track_data = track.mutable_data<int>(PlaceType());

477 478
      BenchAllImpls<KernelTuple, PlaceType>(tag_num, seq_len, x_data, w_data,
                                            alpha_data, track_data, tag_num);
479 480 481 482
    }
  }
}

483 484 485
template <typename KernelTuple, typename PlaceType>
void BenchKernelVBroadcast() {
  using T = typename KernelTuple::data_type;
486
  for (int64_t w : {1, 16, 64, 100, 256}) {
487 488 489 490
    Tensor x;
    x.Resize({w});
    RandomVec<T>(w, x.mutable_data<T>(PlaceType()));
    const T* x_data = x.data<T>();
491
    for (int h : TestSizes()) {
492 493 494
      Tensor y;
      y.Resize({h * w});
      T* y_data = y.mutable_data<T>(PlaceType());
495 496
      BenchAllImpls<KernelTuple, PlaceType>(w, x_data, y_data,
                                            static_cast<int64_t>(h), w);
497 498 499 500
    }
  }
}

501 502 503 504
#define BenchKernelVMul BenchKernelXYZN
#define BenchKernelVAdd BenchKernelXYZN
#define BenchKernelVAddRelu BenchKernelXYZN
#define BenchKernelVSub BenchKernelXYZN
505

506 507
#define BenchKernelVScal BenchKernelAXYN
#define BenchKernelVAddBias BenchKernelAXYN
508

509 510 511 512 513 514 515
#define BenchKernelVRelu BenchKernelXYN
#define BenchKernelVIdentity BenchKernelXYN
#define BenchKernelVSquare BenchKernelXYN
#define BenchKernelVExp BenchKernelXYN
#define BenchKernelVSigmoid BenchKernelXYN
#define BenchKernelVTanh BenchKernelXYN
#define BenchKernelVCopy BenchKernelXYN
516

517 518
#define BenchKernelHMax BenchKernelXRN
#define BenchKernelHSum BenchKernelXRN
519

520 521
#define BenchKernelLSTMCtHt BenchKernelLSTM
#define BenchKernelLSTMC1H1 BenchKernelLSTM
522

523 524 525
#define BenchKernelGRUH1 BenchKernelGRU
#define BenchKernelGRUHtPart1 BenchKernelGRU
#define BenchKernelGRUHtPart2 BenchKernelGRU
526

527
using CPUPlace = paddle::platform::CPUPlace;
528

529 530 531 532
#define BENCH_FP32_CPU(name)                                \
  BENCH_JITKERNEL(name, FP32, CPU) {                        \
    BenchKernel##name<jit::name##Tuple<float>, CPUPlace>(); \
  }
533

534 535 536 537 538
// xyzn
BENCH_FP32_CPU(VMul);
BENCH_FP32_CPU(VAdd);
BENCH_FP32_CPU(VAddRelu);
BENCH_FP32_CPU(VSub);
539

540 541 542
// axyn
BENCH_FP32_CPU(VScal);
BENCH_FP32_CPU(VAddBias);
543

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
// xyn
BENCH_FP32_CPU(VRelu);
BENCH_FP32_CPU(VIdentity);
BENCH_FP32_CPU(VSquare);
BENCH_FP32_CPU(VExp);
BENCH_FP32_CPU(VSigmoid);
BENCH_FP32_CPU(VTanh);
BENCH_FP32_CPU(VCopy);

// xrn
BENCH_FP32_CPU(HMax);
BENCH_FP32_CPU(HSum);

// LSTM
BENCH_FP32_CPU(LSTMCtHt);
BENCH_FP32_CPU(LSTMC1H1);

// GRU
BENCH_FP32_CPU(GRUH1);
BENCH_FP32_CPU(GRUHtPart1);
BENCH_FP32_CPU(GRUHtPart2);

BENCH_FP32_CPU(LayerNorm);
BENCH_FP32_CPU(CRFDecoding);

BENCH_FP32_CPU(SeqPool);
BENCH_FP32_CPU(EmbSeqPool);
BENCH_FP32_CPU(MatMul);
BENCH_FP32_CPU(Softmax);
BENCH_FP32_CPU(Sgd);
BENCH_FP32_CPU(VBroadcast);
575

576 577 578 579 580 581
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
582
//     --filter: the bench name would be run
583 584 585 586 587
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
588

589
  RUN_ALL_BENCHMARK();
590
}