adamw.py 10.8 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from .adam import Adam
17
from ..fluid import core
M
MRXLT 已提交
18
from ..fluid import framework
19
from ..fluid.dygraph import base as imperative_base
M
MRXLT 已提交
20
import paddle
21

22 23
__all__ = []

M
MRXLT 已提交
24

M
MRXLT 已提交
25
class AdamW(Adam):
26
    r"""
27
    The AdamW optimizer is implemented based on the AdamW Optimization
M
MRXLT 已提交
28 29 30 31 32 33 34 35
    in paper `DECOUPLED WEIGHT DECAY REGULARIZATION <https://arxiv.org/pdf/1711.05101.pdf>`_.
    it can resolves the problem of L2 regularization failure in the Adam optimizer.

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad
36

M
MRXLT 已提交
37 38 39 40 41 42 43 44 45
        moemnt\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
            \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {beta}_1^t}

        param\_out & = param - learning\_rate * (\\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)


    Args:
46 47
        learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a LRScheduler. The default value is 0.001.
48 49 50 51 52 53
	parameters (list|tuple, optional): List/Tuple of ``Tensor`` names to update to minimize ``loss``. \
	    This parameter is required in dygraph mode. And you can specify different options for \
            different parameter groups such as the learning rate, weight decay, etc, \
            then the parameters are list of dict. Note that the learning_rate in paramter groups \
            represents the scale of base learning_rate. \
	    The default value is None in static mode, at this time all parameters will be updated.
M
MRXLT 已提交
54 55 56 57 58 59 60 61
        beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.9.
        beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Tensor with shape [1] and data type as float32.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
M
MRXLT 已提交
62 63
        weight_decay (float|Tensor, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
        apply_decay_param_fun (function|None, optional): If it is not None,
64
            only tensors that makes apply_decay_param_fun(Tensor.name)==True
H
hutuxian 已提交
65
            will be updated with weight decay. It only works when we want to specify tensors.
M
MRXLT 已提交
66
            Default: None.
67 68 69
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
M
MRXLT 已提交
70 71 72 73 74 75 76 77
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
78
        multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
79 80 81
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
M
MRXLT 已提交
82 83 84 85 86
    **Notes**:
        **Currently, AdamW doesn't support sparse parameter optimization.**

    Examples:
        .. code-block:: python
C
Chen Long 已提交
87
            
M
MRXLT 已提交
88 89 90
            import paddle

            linear = paddle.nn.Linear(10, 10)
91
            inp = paddle.rand([10,10], dtype="float32")
M
MRXLT 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            out = linear(inp)
            loss = paddle.mean(out)

            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")

            adam = paddle.optimizer.AdamW(learning_rate=0.1,
                    parameters=linear.parameters(),
                    beta1=beta1,
                    beta2=beta2,
                    weight_decay=0.01)
            out.backward()
            adam.step()
            adam.clear_grad()

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

            #Note that the learning_rate of linear_2 is 0.01.
            linear_1 = paddle.nn.Linear(10, 10)
            linear_2 = paddle.nn.Linear(10, 10)
            inp = paddle.uniform(shape=[10, 10], min=-0.1, max=0.1)
            out = linear_1(inp)
            out = linear_2(out)
            loss = paddle.mean(out)
            adam = paddle.optimizer.AdamW(
                learning_rate=0.1,
                parameters=[{
                    'params': linear_1.parameters()
                }, {
                    'params': linear_2.parameters(),
                    'weight_decay': 0.001,
                    'learning_rate': 0.1,
                    'beta1': 0.8
                }],
                weight_decay=0.01,
                beta1=0.9)                   
            out.backward()
            adam.step()
            adam.clear_grad()

M
MRXLT 已提交
131 132 133 134 135 136 137
    """

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
M
MRXLT 已提交
138 139
                 parameters=None,
                 weight_decay=0.01,
M
MRXLT 已提交
140 141
                 apply_decay_param_fun=None,
                 grad_clip=None,
142
                 lazy_mode=False,
143
                 multi_precision=False,
144
                 name=None):
M
MRXLT 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        if not 0 <= beta1 < 1:
            raise ValueError("Invaild value of beta1, expect beta1 in [0,1).")
        if not 0 <= beta2 < 1:
            raise ValueError("Invaild value of beta2, expect beta2 in [0,1).")
        if not 0 <= epsilon:
            raise ValueError("Invaild value of epsilon, expect epsilon >= 0.")
        coeff = weight_decay
        if not isinstance(coeff, float) and \
                not isinstance(coeff, framework.Variable):
            raise TypeError("coeff should be float or Tensor.")
        self._params_name = set()
        self._apply_decay_param_fun = apply_decay_param_fun
        self._coeff = coeff
W
WangXi 已提交
162
        self._lr_to_coeff = dict()
163

M
MRXLT 已提交
164
        super(AdamW, self).__init__(
M
MRXLT 已提交
165 166 167 168 169 170 171
            learning_rate=learning_rate,
            parameters=parameters,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            grad_clip=grad_clip,
            name=name,
172 173
            lazy_mode=lazy_mode,
            multi_precision=multi_precision)
174
        self._default_dict = {'coeff': coeff}
M
MRXLT 已提交
175

W
WangXi 已提交
176
    def _append_decoupled_weight_decay(self, block, param_and_grad):
M
MRXLT 已提交
177
        """
W
WangXi 已提交
178 179
        Add decoupled weight decay op.
            parameter = parameter - parameter * coeff * lr
M
MRXLT 已提交
180 181

        Args:
W
WangXi 已提交
182 183
            block: block in which variable is to be created
            param_and_grad: (parameters, gradients) pairs,
M
MRXLT 已提交
184 185 186 187
                the parameters need to decay.
        Raises:
            Exception: The type of coeff and parameter is not consistent.
        """
W
wangguanzhong 已提交
188 189 190
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
        param, grad = param_and_grad
W
WangXi 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

        if self._apply_decay_param_fun is not None \
                and not self._apply_decay_param_fun(param.name):
            return

        if isinstance(self._learning_rate, float):
            learning_rate = self._learning_rate
        else:
            # NOTE. We add this function to the _append_optimize_op(),
            # for we must make sure _create_param_lr() be called after
            # optimizer._create_global_learning_rate().
            learning_rate = self._create_param_lr(param_and_grad)

        with block.program._optimized_guard(
            [param, grad]), framework.name_scope('weight decay'):
            self._params_name.add(param.name)

208 209 210 211
            # If it has been calculated, the result will be reused.
            # NOTE(wangxi): In dygraph mode, apply_gradient will be executed
            # every step, so need clear _lr_to_coeff every step,
            # we do this in _create_optimization_pass
W
WangXi 已提交
212 213
            decay_coeff = self._lr_to_coeff.get(learning_rate, None)
            if decay_coeff is None:
214 215 216
                # NOTE(wangxi): for pipeline to set device:all
                with paddle.static.device_guard(None):
                    decay_coeff = 1.0 - learning_rate * self._coeff
W
WangXi 已提交
217 218
                self._lr_to_coeff[learning_rate] = decay_coeff

219 220 221 222 223 224 225 226 227 228
            find_master = (self._multi_precision and
                           param.dtype == core.VarDesc.VarType.FP16)
            if find_master:
                master_weight = self._master_weights[param.name]
                scaled_param = master_weight * decay_coeff
                paddle.fluid.layers.assign(
                    input=scaled_param, output=master_weight)
            else:
                scaled_param = param * decay_coeff
                paddle.fluid.layers.assign(input=scaled_param, output=param)
W
WangXi 已提交
229 230 231 232

    def _append_optimize_op(self, block, param_and_grad):
        self._append_decoupled_weight_decay(block, param_and_grad)
        return super(AdamW, self)._append_optimize_op(block, param_and_grad)
M
MRXLT 已提交
233

234 235 236 237 238 239 240
    def _create_optimization_pass(self, parameters_and_grads):
        optimize_ops = super(
            AdamW, self)._create_optimization_pass(parameters_and_grads)
        # In dygraph mode, clear _lr_to_coeff after applied gradient
        self._lr_to_coeff = dict()
        return optimize_ops

M
MRXLT 已提交
241 242
    def __str__(self):
        return " ".join(["Weight Decay, params:", ",".join(self._params_name)])
243 244 245 246 247

    def _update_param_group(self, parameters):
        self._coeff = parameters.get('coeff', self._default_dict['coeff'])
        parameters = parameters.get('params')
        return parameters