unary.py 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import numpy as np

17
from paddle import _C_ops
18 19 20 21 22
from paddle.fluid.framework import (
    dygraph_only,
    core,
    convert_np_dtype_to_dtype_,
)
23

24
__all__ = []
25

26 27 28 29 30 31 32 33 34
_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
    core.VarDesc.VarType.BOOL,
]

35

36
@dygraph_only
37
def sin(x, name=None):
38
    """
39
    Calculate elementwise sin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
40

41 42 43
    .. math::

        out = sin(x)
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
60
            out = paddle.sparse.sin(sparse_x)
61

62
    """
63
    return _C_ops.sparse_sin(x)
64 65 66 67 68 69


@dygraph_only
def tan(x, name=None):
    """
    Calculate elementwise tan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
70

71 72
    .. math::

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        out = tan(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
90
            out = paddle.sparse.tan(sparse_x)
91

92
    """
93
    return _C_ops.sparse_tan(x)
94 95 96 97 98 99


@dygraph_only
def asin(x, name=None):
    """
    Calculate elementwise asin of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
100

101 102 103
    .. math::

        out = asin(x)
104 105 106 107 108 109 110 111 112 113 114 115 116 117

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

118 119
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
120
            out = paddle.sparse.asin(sparse_x)
121

122
    """
123
    return _C_ops.sparse_asin(x)
124 125


126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
@dygraph_only
def transpose(x, perm, name=None):
    """
    Changes the perm order of ``x`` without changing its data, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = transpose(x, perm)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A transposed Sparse Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]])
            sparse_x = dense_x.to_sparse_coo(1)
151
            out = paddle.sparse.transpose(sparse_x, [1, 0])
152 153 154 155 156

    """
    return _C_ops.sparse_transpose(x, perm)


157 158 159 160
@dygraph_only
def atan(x, name=None):
    """
    Calculate elementwise atan of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    .. math::

        out = atan(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
181
            out = paddle.sparse.atan(sparse_x)
182

183
    """
184
    return _C_ops.sparse_atan(x)
185 186 187 188 189 190


@dygraph_only
def sinh(x, name=None):
    """
    Calculate elementwise sinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    .. math::

        out = sinh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
211
            out = paddle.sparse.sinh(sparse_x)
212

213
    """
214
    return _C_ops.sparse_sinh(x)
215 216 217 218 219 220


@dygraph_only
def asinh(x, name=None):
    """
    Calculate elementwise asinh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
221

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    .. math::

        out = asinh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
241
            out = paddle.sparse.asinh(sparse_x)
242

243
    """
244
    return _C_ops.sparse_asinh(x)
245 246 247 248 249 250


@dygraph_only
def atanh(x, name=None):
    """
    Calculate elementwise atanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    .. math::

        out = atanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
271
            out = paddle.sparse.atanh(sparse_x)
272

273
    """
274
    return _C_ops.sparse_atanh(x)
275 276 277 278 279 280


@dygraph_only
def tanh(x, name=None):
    """
    Calculate elementwise tanh of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    .. math::

        out = tanh(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
298

299 300
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
301
            out = paddle.sparse.tanh(sparse_x)
302

303
    """
304
    return _C_ops.sparse_tanh(x)
305 306


307
@dygraph_only
308
def square(x, name=None):
309
    """
310
    Calculate elementwise square of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
311

312 313 314 315 316 317 318 319
    .. math::

        out = square(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
320

321 322 323 324 325 326 327
    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle
328

329 330
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
331
            out = paddle.sparse.square(sparse_x)
332

333
    """
334
    return _C_ops.sparse_square(x)
335 336 337 338 339 340


@dygraph_only
def sqrt(x, name=None):
    """
    Calculate elementwise sqrt of SparseTensor, requiring x to be a SparseCooTensor or SparseCsrTensor.
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    .. math::

        out = sqrt(x)

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

359 360
            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
361
            out = paddle.sparse.sqrt(sparse_x)
362

363
    """
364
    return _C_ops.sparse_sqrt(x)
365 366


367
@dygraph_only
368
def log1p(x, name=None):
369
    """
370
    Calculate the natural log of (1+x), requiring x to be a SparseCooTensor or SparseCsrTensor.
371 372 373

    .. math::

374
        out = ln(1+x)
375 376 377 378 379 380 381 382 383 384 385 386 387 388

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

389 390
            dense_x = paddle.to_tensor([-2, 0, 1], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
391
            out = paddle.sparse.log1p(sparse_x)
392

393
    """
394
    return _C_ops.sparse_log1p(x)
395 396 397 398 399 400 401 402 403 404


@dygraph_only
def cast(x, index_dtype=None, value_dtype=None, name=None):
    """
    cast non-zero-index of SparseTensor to `index_dtype`, non-zero-element of SparseTensor to
    `value_dtype` , requiring x to be a SparseCooTensor or SparseCsrTensor.

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
405
        index_dtype (np.dtype|str, optional): Data type of the index of SparseCooTensor,
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
            or crows/cols of SparseCsrTensor. Can be uint8, int8, int16, int32, int64.
        value_dtype (np.dtype|str, optional): Data type of the value of SparseCooTensor,
            SparseCsrTensor. Can be bool, float16, float32, float64, int8, int32, int64, uint8.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 1])
            sparse_x = dense_x.to_sparse_coo(1)
422
            out = paddle.sparse.cast(sparse_x, 'int32', 'float64')
423

424 425 426 427 428
    """
    if index_dtype and not isinstance(index_dtype, core.VarDesc.VarType):
        index_dtype = convert_np_dtype_to_dtype_(index_dtype)
    if value_dtype and not isinstance(value_dtype, core.VarDesc.VarType):
        value_dtype = convert_np_dtype_to_dtype_(value_dtype)
429
    return _C_ops.sparse_cast(x, index_dtype, value_dtype)
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456


@dygraph_only
def pow(x, factor, name=None):
    """
    Calculate elementwise pow of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = x^{factor}

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        factor (float|int): factor of pow.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
457
            out = paddle.sparse.pow(sparse_x, 2)
458

459
    """
460
    return _C_ops.sparse_pow(x, float(factor))
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486


@dygraph_only
def neg(x, name=None):
    """
    Calculate elementwise negative of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = -x

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
487
            out = paddle.sparse.neg(sparse_x)
488

489
    """
490
    return _C_ops.sparse_scale(x, -1.0, 0.0, True)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516


@dygraph_only
def abs(x, name=None):
    """
    Calculate elementwise absolute value of x, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = |x|

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2, 0, 3], dtype='float32')
            sparse_x = dense_x.to_sparse_coo(1)
517
            out = paddle.sparse.abs(sparse_x)
518

519
    """
520
    return _C_ops.sparse_abs(x)
Z
zhangkaihuo 已提交
521 522 523


@dygraph_only
Z
zhangkaihuo 已提交
524
def coalesce(x, name=None):
Z
zhangkaihuo 已提交
525 526 527 528 529
    r"""
    the coalesced operator include sorted and merge, after coalesced, the indices of x is sorted and unique.

    Parameters:
        x (Tensor): the input SparseCooTensor.
Z
zhangkaihuo 已提交
530 531
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
Z
zhangkaihuo 已提交
532 533 534 535 536 537 538 539

    Returns:
        Tensor: return the SparseCooTensor after coalesced.

    Examples:
        .. code-block:: python

            import paddle
540 541 542

            indices = [[0, 0, 1], [1, 1, 2]]
            values = [1.0, 2.0, 3.0]
543 544
            sp_x = paddle.sparse.sparse_coo_tensor(indices, values)
            sp_x = paddle.sparse.coalesce(sp_x)
545 546 547 548
            print(sp_x.indices())
            #[[0, 1], [1, 2]]
            print(sp_x.values())
            #[3.0, 3.0]
549
    """
550
    return _C_ops.sparse_coalesce(x)
551 552 553 554


@dygraph_only
def rad2deg(x, name=None):
555
    r"""
556
    Convert each of the elements of input x from radian to degree,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        rad2deg(x) = 180/ \pi * x

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([3.142, 0., -3.142])
            sparse_x = dense_x.to_sparse_coo(1)
578
            out = paddle.sparse.rad2deg(sparse_x)
579

580 581
    """
    if x.dtype in _int_dtype_:
582 583
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
    return _C_ops.sparse_scale(x, 180.0 / np.pi, 0.0, True)
584 585 586 587


@dygraph_only
def deg2rad(x, name=None):
588
    r"""
589
    Convert each of the elements of input x from degree to radian,
590
    requiring x to be a SparseCooTensor or SparseCsrTensor.
591

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    .. math::

        deg2rad(x) = \pi * x / 180

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-180, 0, 180])
            sparse_x = dense_x.to_sparse_coo(1)
611
            out = paddle.sparse.deg2rad(sparse_x)
612

613 614
    """
    if x.dtype in _int_dtype_:
615 616
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
    return _C_ops.sparse_scale(x, np.pi / 180.0, 0.0, True)
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642


@dygraph_only
def expm1(x, name=None):
    """
    Calculate elementwise `exp(x)-1` , requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

        out = exp(x) - 1

    Parameters:
        x (Tensor): The input Sparse Tensor with data type float32, float64.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Sparse Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
643
            out = paddle.sparse.expm1(sparse_x)
644
    """
645
    return _C_ops.sparse_expm1(x)
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695


@dygraph_only
def reshape(x, shape, name=None):
    """
    Changes the shape of ``x`` without changing its value, requiring x to be a SparseCooTensor or SparseCsrTensor.
    Currently this function can only reshape the sparse dims of ``x`` , but ``shape`` argument must be specified
    as the shape of the reshaped tensor.

    Note that if x is a SparseCsrTensor, then len(shape) must be 2 or 3.

    There are some tricks when specifying the target shape.

        - 1. -1 means the value of this dimension is inferred from the total element number of x and remaining dimensions. Thus one and only one dimension can be set -1.

        - 2. 0 means the actual dimension value is going to be copied from the corresponding dimension of x. The indices of 0 in the target shape can not exceed the rank of x.

    Here are some examples to explain it.

        - 1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [6, 8], the reshape operator will transform x into a 2-D tensor with shape [6, 8] and leaving x's data unchanged.

        - 2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [2, 3, -1, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this case, one dimension of the target shape is set to -1, the value of this dimension is inferred from the total element number of x and remaining dimensions.

        - 3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case, besides -1, 0 means the actual dimension value is going to be copied from the corresponding dimension of x.

    Args:
        x (Tensor): The input sparse tensor with data type ``float32``, ``float64``, ``int32``, ``int64`` or ``bool``.
        shape (list|tuple): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: A reshaped Tensor with the same data type as ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x_shape = [6, 2, 3]
            new_shape = [1, 0, 2, -1, 3]
            format = "coo"

            dense_x = paddle.randint(-100, 100, x_shape) * paddle.randint(0, 2, x_shape)

            if format == "coo":
                sp_x = dense_x.to_sparse_coo(len(x_shape))
            else:
                sp_x = dense_x.to_sparse_csr()
696
            sp_out = paddle.sparse.reshape(sp_x, new_shape)
697 698 699 700 701 702

            print(sp_out)
            # the shape of sp_out is [1, 2, 2, 3, 3]

    """
    return _C_ops.sparse_reshape(x, shape)