common_graph_table.h 21.8 KB
Newer Older
S
seemingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ThreadPool.h>
#include <assert.h>
#include <pthread.h>
20

S
seemingwang 已提交
21 22 23 24 25 26
#include <algorithm>
#include <cassert>
#include <cstdio>
#include <ctime>
#include <functional>
#include <iostream>
S
seemingwang 已提交
27
#include <list>
S
seemingwang 已提交
28
#include <map>
S
seemingwang 已提交
29 30
#include <memory>
#include <mutex>  // NOLINT
S
seemingwang 已提交
31 32 33
#include <numeric>
#include <queue>
#include <set>
S
seemingwang 已提交
34
#include <string>
S
seemingwang 已提交
35
#include <thread>
S
seemingwang 已提交
36
#include <unordered_map>
S
seemingwang 已提交
37
#include <unordered_set>
S
seemingwang 已提交
38 39
#include <utility>
#include <vector>
40

41 42
#include "paddle/fluid/distributed/ps/table/accessor.h"
#include "paddle/fluid/distributed/ps/table/common_table.h"
43
#include "paddle/fluid/distributed/ps/table/graph/class_macro.h"
44
#include "paddle/fluid/distributed/ps/table/graph/graph_node.h"
S
seemingwang 已提交
45
#include "paddle/fluid/string/string_helper.h"
46
#include "paddle/phi/core/utils/rw_lock.h"
47

48
#ifdef PADDLE_WITH_HETERPS
Z
zhaocaibei123 已提交
49
#include "paddle/fluid/distributed/ps/table/depends/rocksdb_warpper.h"
50 51
#include "paddle/fluid/framework/fleet/heter_ps/gpu_graph_node.h"
#endif
S
seemingwang 已提交
52 53 54 55 56 57
namespace paddle {
namespace distributed {
class GraphShard {
 public:
  size_t get_size();
  GraphShard() {}
58
  ~GraphShard();
S
seemingwang 已提交
59 60
  std::vector<Node *> &get_bucket() { return bucket; }
  std::vector<Node *> get_batch(int start, int end, int step);
61 62
  std::vector<int64_t> get_ids_by_range(int start, int end) {
    std::vector<int64_t> res;
63
    for (int i = start; i < end && i < (int)bucket.size(); i++) {
S
seemingwang 已提交
64 65 66 67
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
68 69 70 71 72 73 74
  std::vector<int64_t> get_all_id() {
    std::vector<int64_t> res;
    for (int i = 0; i < (int)bucket.size(); i++) {
      res.push_back(bucket[i]->get_id());
    }
    return res;
  }
75
  GraphNode *add_graph_node(int64_t id);
76
  GraphNode *add_graph_node(Node *node);
77 78 79
  FeatureNode *add_feature_node(int64_t id);
  Node *find_node(int64_t id);
  void delete_node(int64_t id);
80
  void clear();
81 82
  void add_neighbor(int64_t id, int64_t dst_id, float weight);
  std::unordered_map<int64_t, int> &get_node_location() {
S
seemingwang 已提交
83 84 85 86
    return node_location;
  }

 private:
87
  std::unordered_map<int64_t, int> node_location;
S
seemingwang 已提交
88 89
  std::vector<Node *> bucket;
};
S
seemingwang 已提交
90 91 92 93

enum LRUResponse { ok = 0, blocked = 1, err = 2 };

struct SampleKey {
94
  int idx;
95
  int64_t node_key;
S
seemingwang 已提交
96
  size_t sample_size;
97
  bool is_weighted;
98 99 100
  SampleKey(int _idx,
            int64_t _node_key,
            size_t _sample_size,
101 102 103 104 105 106
            bool _is_weighted) {
    idx = _idx;
    node_key = _node_key;
    sample_size = _sample_size;
    is_weighted = _is_weighted;
  }
S
seemingwang 已提交
107
  bool operator==(const SampleKey &s) const {
108 109
    return idx == s.idx && node_key == s.node_key &&
           sample_size == s.sample_size && is_weighted == s.is_weighted;
S
seemingwang 已提交
110 111 112 113 114 115
  }
};

class SampleResult {
 public:
  size_t actual_size;
116 117 118 119 120 121 122
  std::shared_ptr<char> buffer;
  SampleResult(size_t _actual_size, std::shared_ptr<char> &_buffer)
      : actual_size(_actual_size), buffer(_buffer) {}
  SampleResult(size_t _actual_size, char *_buffer)
      : actual_size(_actual_size),
        buffer(_buffer, [](char *p) { delete[] p; }) {}
  ~SampleResult() {}
S
seemingwang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136
};

template <typename K, typename V>
class LRUNode {
 public:
  LRUNode(K _key, V _data, size_t _ttl) : key(_key), data(_data), ttl(_ttl) {
    next = pre = NULL;
  }
  K key;
  V data;
  size_t ttl;
  // time to live
  LRUNode<K, V> *pre, *next;
};
137
template <typename K, typename V>
S
seemingwang 已提交
138 139
class ScaledLRU;

140
template <typename K, typename V>
S
seemingwang 已提交
141 142
class RandomSampleLRU {
 public:
143 144 145
  RandomSampleLRU(ScaledLRU<K, V> *_father) {
    father = _father;
    remove_count = 0;
S
seemingwang 已提交
146 147 148
    node_size = 0;
    node_head = node_end = NULL;
    global_ttl = father->ttl;
149
    total_diff = 0;
S
seemingwang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
  }

  ~RandomSampleLRU() {
    LRUNode<K, V> *p;
    while (node_head != NULL) {
      p = node_head->next;
      delete node_head;
      node_head = p;
    }
  }
  LRUResponse query(K *keys, size_t length, std::vector<std::pair<K, V>> &res) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
163 164 165 166 167 168 169 170 171 172 173 174 175 176
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);

    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        res.emplace_back(keys[i], iter->second->data);
        iter->second->ttl--;
        if (iter->second->ttl == 0) {
          remove(iter->second);
          if (remove_count != 0) remove_count--;
        } else {
          move_to_tail(iter->second);
S
seemingwang 已提交
177 178
        }
      }
179 180 181 182 183
    }
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
S
seemingwang 已提交
184 185 186 187 188 189 190
    }
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
  LRUResponse insert(K *keys, V *data, size_t length) {
    if (pthread_rwlock_tryrdlock(&father->rwlock) != 0)
      return LRUResponse::blocked;
191 192 193 194 195 196 197 198 199 200 201 202
    // pthread_rwlock_rdlock(&father->rwlock);
    int init_size = node_size - remove_count;
    process_redundant(length * 3);
    for (size_t i = 0; i < length; i++) {
      auto iter = key_map.find(keys[i]);
      if (iter != key_map.end()) {
        move_to_tail(iter->second);
        iter->second->ttl = global_ttl;
        iter->second->data = data[i];
      } else {
        LRUNode<K, V> *temp = new LRUNode<K, V>(keys[i], data[i], global_ttl);
        add_new(temp);
S
seemingwang 已提交
203 204
      }
    }
205 206 207 208 209 210
    total_diff += node_size - remove_count - init_size;
    if (total_diff >= 500 || total_diff < -500) {
      father->handle_size_diff(total_diff);
      total_diff = 0;
    }

S
seemingwang 已提交
211 212 213
    pthread_rwlock_unlock(&father->rwlock);
    return LRUResponse::ok;
  }
214 215
  void remove(LRUNode<K, V> *node) {
    fetch(node);
S
seemingwang 已提交
216
    node_size--;
217 218
    key_map.erase(node->key);
    delete node;
219 220 221
  }

  void process_redundant(int process_size) {
222
    int length = std::min(remove_count, process_size);
223 224 225
    while (length--) {
      remove(node_head);
      remove_count--;
S
seemingwang 已提交
226
    }
227
    // std::cerr<<"after remove_count = "<<remove_count<<std::endl;
S
seemingwang 已提交
228 229
  }

230 231 232 233 234 235 236 237 238 239 240 241
  void move_to_tail(LRUNode<K, V> *node) {
    fetch(node);
    place_at_tail(node);
  }

  void add_new(LRUNode<K, V> *node) {
    node->ttl = global_ttl;
    place_at_tail(node);
    node_size++;
    key_map[node->key] = node;
  }
  void place_at_tail(LRUNode<K, V> *node) {
S
seemingwang 已提交
242 243 244 245 246 247 248 249 250 251 252
    if (node_end == NULL) {
      node_head = node_end = node;
      node->next = node->pre = NULL;
    } else {
      node_end->next = node;
      node->pre = node_end;
      node->next = NULL;
      node_end = node;
    }
  }

253 254 255 256 257 258 259 260 261 262 263 264 265
  void fetch(LRUNode<K, V> *node) {
    if (node->pre) {
      node->pre->next = node->next;
    } else {
      node_head = node->next;
    }
    if (node->next) {
      node->next->pre = node->pre;
    } else {
      node_end = node->pre;
    }
  }

S
seemingwang 已提交
266
 private:
267 268
  std::unordered_map<K, LRUNode<K, V> *> key_map;
  ScaledLRU<K, V> *father;
269
  size_t global_ttl, size_limit;
270
  int node_size, total_diff;
S
seemingwang 已提交
271
  LRUNode<K, V> *node_head, *node_end;
272
  friend class ScaledLRU<K, V>;
273
  int remove_count;
S
seemingwang 已提交
274 275
};

276
template <typename K, typename V>
S
seemingwang 已提交
277 278
class ScaledLRU {
 public:
279
  ScaledLRU(size_t _shard_num, size_t size_limit, size_t _ttl)
S
seemingwang 已提交
280
      : size_limit(size_limit), ttl(_ttl) {
281
    shard_num = _shard_num;
S
seemingwang 已提交
282 283 284 285
    pthread_rwlock_init(&rwlock, NULL);
    stop = false;
    thread_pool.reset(new ::ThreadPool(1));
    global_count = 0;
286 287
    lru_pool = std::vector<RandomSampleLRU<K, V>>(shard_num,
                                                  RandomSampleLRU<K, V>(this));
S
seemingwang 已提交
288 289 290 291
    shrink_job = std::thread([this]() -> void {
      while (true) {
        {
          std::unique_lock<std::mutex> lock(mutex_);
292
          cv_.wait_for(lock, std::chrono::milliseconds(20000));
S
seemingwang 已提交
293 294 295 296 297
          if (stop) {
            return;
          }
        }
        auto status =
Z
zhaocaibei123 已提交
298
            thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
299 300 301 302 303 304 305 306 307 308
        status.wait();
      }
    });
    shrink_job.detach();
  }
  ~ScaledLRU() {
    std::unique_lock<std::mutex> lock(mutex_);
    stop = true;
    cv_.notify_one();
  }
309 310 311
  LRUResponse query(size_t index,
                    K *keys,
                    size_t length,
S
seemingwang 已提交
312 313 314 315 316 317
                    std::vector<std::pair<K, V>> &res) {
    return lru_pool[index].query(keys, length, res);
  }
  LRUResponse insert(size_t index, K *keys, V *data, size_t length) {
    return lru_pool[index].insert(keys, data, length);
  }
Z
zhaocaibei123 已提交
318
  int Shrink() {
S
seemingwang 已提交
319 320
    int node_size = 0;
    for (size_t i = 0; i < lru_pool.size(); i++) {
321
      node_size += lru_pool[i].node_size - lru_pool[i].remove_count;
S
seemingwang 已提交
322 323
    }

324
    if ((size_t)node_size <= size_t(1.1 * size_limit) + 1) return 0;
S
seemingwang 已提交
325
    if (pthread_rwlock_wrlock(&rwlock) == 0) {
326 327 328 329
      global_count = 0;
      for (size_t i = 0; i < lru_pool.size(); i++) {
        global_count += lru_pool[i].node_size - lru_pool[i].remove_count;
      }
330
      if ((size_t)global_count > size_limit) {
331
        size_t remove = global_count - size_limit;
332
        for (size_t i = 0; i < lru_pool.size(); i++) {
333 334 335 336
          lru_pool[i].total_diff = 0;
          lru_pool[i].remove_count +=
              1.0 * (lru_pool[i].node_size - lru_pool[i].remove_count) /
              global_count * remove;
S
seemingwang 已提交
337 338 339 340 341 342 343
        }
      }
      pthread_rwlock_unlock(&rwlock);
      return 0;
    }
    return 0;
  }
344

S
seemingwang 已提交
345 346 347
  void handle_size_diff(int diff) {
    if (diff != 0) {
      __sync_fetch_and_add(&global_count, diff);
348
      if (global_count > int(1.25 * size_limit)) {
Z
zhaocaibei123 已提交
349
        thread_pool->enqueue([this]() -> int { return Shrink(); });
S
seemingwang 已提交
350 351 352 353 354 355 356 357
      }
    }
  }

  size_t get_ttl() { return ttl; }

 private:
  pthread_rwlock_t rwlock;
358
  size_t shard_num;
S
seemingwang 已提交
359
  int global_count;
360
  size_t size_limit, total, hit;
S
seemingwang 已提交
361 362 363
  size_t ttl;
  bool stop;
  std::thread shrink_job;
364
  std::vector<RandomSampleLRU<K, V>> lru_pool;
S
seemingwang 已提交
365 366 367
  mutable std::mutex mutex_;
  std::condition_variable cv_;
  std::shared_ptr<::ThreadPool> thread_pool;
368
  friend class RandomSampleLRU<K, V>;
S
seemingwang 已提交
369 370
};

371
/*
372 373 374 375 376 377 378 379 380 381 382 383
#ifdef PADDLE_WITH_HETERPS
enum GraphSamplerStatus { waiting = 0, running = 1, terminating = 2 };
class GraphTable;
class GraphSampler {
 public:
  GraphSampler() {
    status = GraphSamplerStatus::waiting;
    thread_pool.reset(new ::ThreadPool(1));
    callback = [](std::vector<paddle::framework::GpuPsCommGraph> &res) {
      return;
    };
  }
384 385 386
  virtual int loadData(const std::string &path){
    return 0;
  }
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  virtual int run_graph_sampling() = 0;
  virtual int start_graph_sampling() {
    if (status != GraphSamplerStatus::waiting) {
      return -1;
    }
    std::promise<int> prom;
    std::future<int> fut = prom.get_future();
    graph_sample_task_over = thread_pool->enqueue([&prom, this]() {
      prom.set_value(0);
      status = GraphSamplerStatus::running;
      return run_graph_sampling();
    });
    return fut.get();
  }
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args) = 0;
  virtual void set_graph_sample_callback(
      std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
          callback) {
    this->callback = callback;
  }

  virtual int end_graph_sampling() {
    if (status == GraphSamplerStatus::running) {
      status = GraphSamplerStatus::terminating;
      return graph_sample_task_over.get();
    }
    return -1;
  }
  virtual GraphSamplerStatus get_graph_sampler_status() { return status; }

 protected:
  std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
      callback;
  std::shared_ptr<::ThreadPool> thread_pool;
  GraphSamplerStatus status;
  std::future<int> graph_sample_task_over;
  std::vector<paddle::framework::GpuPsCommGraph> sample_res;
};
#endif
427
*/
428

429
class GraphTable : public Table {
S
seemingwang 已提交
430
 public:
431 432 433 434
  GraphTable() {
    use_cache = false;
    shard_num = 0;
    rw_lock.reset(new pthread_rwlock_t());
435 436 437 438
#ifdef PADDLE_WITH_HETERPS
    next_partition = 0;
    total_memory_cost = 0;
#endif
439
  }
440
  virtual ~GraphTable();
441 442 443 444 445 446 447 448 449 450 451 452

  virtual void *GetShard(size_t shard_idx) { return 0; }

  static int32_t sparse_local_shard_num(uint32_t shard_num,
                                        uint32_t server_num) {
    if (shard_num % server_num == 0) {
      return shard_num / server_num;
    }
    size_t local_shard_num = shard_num / server_num + 1;
    return local_shard_num;
  }

453 454
  static size_t get_sparse_shard(uint32_t shard_num,
                                 uint32_t server_num,
455 456 457 458
                                 uint64_t key) {
    return (key % shard_num) / sparse_local_shard_num(shard_num, server_num);
  }

459 460 461 462
  virtual int32_t pull_graph_list(int type_id,
                                  int idx,
                                  int start,
                                  int size,
S
seemingwang 已提交
463
                                  std::unique_ptr<char[]> &buffer,
464 465
                                  int &actual_size,
                                  bool need_feature,
S
seemingwang 已提交
466 467
                                  int step);

468
  virtual int32_t random_sample_neighbors(
469 470 471
      int idx,
      int64_t *node_ids,
      int sample_size,
472
      std::vector<std::shared_ptr<char>> &buffers,
473 474
      std::vector<int> &actual_sizes,
      bool need_weight);
S
seemingwang 已提交
475

476 477 478
  int32_t random_sample_nodes(int type_id,
                              int idx,
                              int sample_size,
479
                              std::unique_ptr<char[]> &buffers,
S
seemingwang 已提交
480 481 482
                              int &actual_sizes);

  virtual int32_t get_nodes_ids_by_ranges(
483 484 485
      int type_id,
      int idx,
      std::vector<std::pair<int, int>> ranges,
486
      std::vector<int64_t> &res);
Z
zhaocaibei123 已提交
487 488
  virtual int32_t Initialize() { return 0; }
  virtual int32_t Initialize(const TableParameter &config,
489
                             const FsClientParameter &fs_config);
Z
zhaocaibei123 已提交
490 491
  virtual int32_t Initialize(const GraphParameter &config);
  int32_t Load(const std::string &path, const std::string &param);
S
seemingwang 已提交
492

493 494
  int32_t load_edges(const std::string &path,
                     bool reverse,
495
                     const std::string &edge_type);
S
seemingwang 已提交
496

497 498
  std::vector<std::vector<int64_t>> get_all_id(int type,
                                               int idx,
499
                                               int slice_num);
S
seemingwang 已提交
500 501
  int32_t load_nodes(const std::string &path, std::string node_type);

502 503
  int32_t add_graph_node(int idx,
                         std::vector<int64_t> &id_list,
504 505
                         std::vector<bool> &is_weight_list);

506
  int32_t remove_graph_node(int idx, std::vector<int64_t> &id_list);
507

508
  int32_t get_server_index_by_id(int64_t id);
509
  Node *find_node(int type_id, int idx, int64_t id);
S
seemingwang 已提交
510

Y
yaoxuefeng 已提交
511 512 513
  virtual int32_t Pull(TableContext &context) { return 0; }
  virtual int32_t Push(TableContext &context) { return 0; }

514
  virtual int32_t clear_nodes(int type, int idx);
Z
zhaocaibei123 已提交
515 516 517
  virtual void Clear() {}
  virtual int32_t Flush() { return 0; }
  virtual int32_t Shrink(const std::string &param) { return 0; }
S
seemingwang 已提交
518
  //指定保存路径
Z
zhaocaibei123 已提交
519
  virtual int32_t Save(const std::string &path, const std::string &converter) {
S
seemingwang 已提交
520 521
    return 0;
  }
Z
zhaocaibei123 已提交
522 523
  virtual int32_t InitializeShard() { return 0; }
  virtual int32_t SetShard(size_t shard_idx, size_t server_num) {
524 525 526 527 528 529 530 531 532 533 534 535
    _shard_idx = shard_idx;
    /*
    _shard_num is not used in graph_table, this following operation is for the
    purpose of
    being compatible with base class table.
    */
    _shard_num = server_num;
    this->server_num = server_num;
    return 0;
  }
  virtual uint32_t get_thread_pool_index_by_shard_index(int64_t shard_index);
  virtual uint32_t get_thread_pool_index(int64_t node_id);
536 537
  virtual std::pair<int32_t, std::string> parse_feature(int idx,
                                                        std::string feat_str);
S
seemingwang 已提交
538

539 540
  virtual int32_t get_node_feat(int idx,
                                const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
541 542 543
                                const std::vector<std::string> &feature_names,
                                std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
544
  virtual int32_t set_node_feat(
545 546
      int idx,
      const std::vector<int64_t> &node_ids,
S
seemingwang 已提交
547 548 549
      const std::vector<std::string> &feature_names,
      const std::vector<std::vector<std::string>> &res);

S
seemingwang 已提交
550
  size_t get_server_num() { return server_num; }
551
  void clear_graph(int idx);
552
  virtual int32_t make_neighbor_sample_cache(size_t size_limit, size_t ttl) {
553 554 555
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (use_cache == false) {
556
        scaled_lru.reset(new ScaledLRU<SampleKey, SampleResult>(
557
            task_pool_size_, size_limit, ttl));
558 559 560 561 562
        use_cache = true;
      }
    }
    return 0;
  }
563
  virtual void load_node_weight(int type_id, int idx, std::string path);
564
#ifdef PADDLE_WITH_HETERPS
565 566 567 568 569 570 571 572 573 574 575 576
  // virtual int32_t start_graph_sampling() {
  //   return this->graph_sampler->start_graph_sampling();
  // }
  // virtual int32_t end_graph_sampling() {
  //   return this->graph_sampler->end_graph_sampling();
  // }
  // virtual int32_t set_graph_sample_callback(
  //     std::function<void(std::vector<paddle::framework::GpuPsCommGraph> &)>
  //         callback) {
  //   graph_sampler->set_graph_sample_callback(callback);
  //   return 0;
  // }
577
  virtual void make_partitions(int idx, int64_t gb_size, int device_len);
578
  virtual void export_partition_files(int idx, std::string file_path);
579
  virtual char *random_sample_neighbor_from_ssd(
580 581 582 583 584 585 586
      int idx,
      int64_t id,
      int sample_size,
      const std::shared_ptr<std::mt19937_64> rng,
      int &actual_size);
  virtual int32_t add_node_to_ssd(
      int type_id, int idx, int64_t src_id, char *data, int len);
587
  virtual paddle::framework::GpuPsCommGraph make_gpu_ps_graph(
588
      int idx, std::vector<int64_t> ids);
589 590 591 592 593 594 595 596 597 598
  int32_t Load_to_ssd(const std::string &path, const std::string &param);
  int64_t load_graph_to_memory_from_ssd(int idx, std::vector<int64_t> &ids);
  int32_t make_complementary_graph(int idx, int64_t byte_size);
  int32_t dump_edges_to_ssd(int idx);
  int32_t get_partition_num(int idx) { return partitions[idx].size(); }
  std::vector<int64_t> get_partition(int idx, int index) {
    if (idx >= partitions.size() || index >= partitions[idx].size())
      return std::vector<int64_t>();
    return partitions[idx][index];
  }
599 600
  int32_t load_edges_to_ssd(const std::string &path,
                            bool reverse_edge,
601 602 603
                            const std::string &edge_type);
  int32_t load_next_partition(int idx);
  void set_search_level(int search_level) { this->search_level = search_level; }
604
  int search_level;
605 606 607
  int64_t total_memory_cost;
  std::vector<std::vector<std::vector<int64_t>>> partitions;
  int next_partition;
608
#endif
609 610 611
  virtual int32_t add_comm_edge(int idx, int64_t src_id, int64_t dst_id);
  virtual int32_t build_sampler(int idx, std::string sample_type = "random");
  std::vector<std::vector<GraphShard *>> edge_shards, feature_shards;
S
seemingwang 已提交
612
  size_t shard_start, shard_end, server_num, shard_num_per_server, shard_num;
613
  int task_pool_size_ = 24;
S
seemingwang 已提交
614 615
  const int random_sample_nodes_ranges = 3;

616
  std::vector<std::vector<std::unordered_map<int64_t, double>>> node_weight;
617 618 619 620 621 622
  std::vector<std::vector<std::string>> feat_name;
  std::vector<std::vector<std::string>> feat_dtype;
  std::vector<std::vector<int32_t>> feat_shape;
  std::vector<std::unordered_map<std::string, int32_t>> feat_id_map;
  std::unordered_map<std::string, int> feature_to_id, edge_to_id;
  std::vector<std::string> id_to_feature, id_to_edge;
S
seemingwang 已提交
623 624 625 626
  std::string table_name;
  std::string table_type;

  std::vector<std::shared_ptr<::ThreadPool>> _shards_task_pool;
627
  std::vector<std::shared_ptr<std::mt19937_64>> _shards_task_rng_pool;
628
  std::shared_ptr<ScaledLRU<SampleKey, SampleResult>> scaled_lru;
629 630
  std::unordered_set<int64_t> extra_nodes;
  std::unordered_map<int64_t, size_t> extra_nodes_to_thread_index;
631
  bool use_cache, use_duplicate_nodes;
632 633
  int cache_size_limit;
  int cache_ttl;
634
  mutable std::mutex mutex_;
635 636 637
  std::shared_ptr<pthread_rwlock_t> rw_lock;
#ifdef PADDLE_WITH_HETERPS
  // paddle::framework::GpuPsGraphTable gpu_graph_table;
638 639 640 641
  paddle::distributed::RocksDBHandler *_db;
// std::shared_ptr<::ThreadPool> graph_sample_pool;
// std::shared_ptr<GraphSampler> graph_sampler;
// REGISTER_GRAPH_FRIEND_CLASS(2, CompleteGraphSampler, BasicBfsGraphSampler)
642 643 644
#endif
};

645
/*
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#ifdef PADDLE_WITH_HETERPS
REGISTER_PSCORE_REGISTERER(GraphSampler);
class CompleteGraphSampler : public GraphSampler {
 public:
  CompleteGraphSampler() {}
  ~CompleteGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  // std::vector<GpuPsCommGraph> sample_res;
  // std::shared_ptr<std::mt19937_64> random;
  int gpu_num;
};

class BasicBfsGraphSampler : public GraphSampler {
 public:
  BasicBfsGraphSampler() {}
  ~BasicBfsGraphSampler() {}
  // virtual pthread_rwlock_t *export_rw_lock();
  virtual int run_graph_sampling();
  virtual void init(size_t gpu_num, GraphTable *graph_table,
                    std::vector<std::string> args_);

 protected:
  GraphTable *graph_table;
  // std::vector<std::vector<GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<paddle::framework::GpuPsGraphNode>> sample_nodes;
  std::vector<std::vector<int64_t>> sample_neighbors;
  size_t gpu_num;
681
  int init_search_size, node_num_for_each_shard, edge_num_for_each_node;
682 683 684
  int rounds, interval;
  std::vector<std::unordered_map<int64_t, std::vector<int64_t>>>
      sample_neighbors_map;
S
seemingwang 已提交
685
};
686
#endif
687
*/
688
}  // namespace distributed
689

690
};  // namespace paddle
691 692 693 694 695 696

namespace std {

template <>
struct hash<paddle::distributed::SampleKey> {
  size_t operator()(const paddle::distributed::SampleKey &s) const {
697
    return s.idx ^ s.node_key ^ s.sample_size;
698 699
  }
};
700
}  // namespace std